论文标题

达尔文模型升级:具有选择性兼容性的模型

Darwinian Model Upgrades: Model Evolving with Selective Compatibility

论文作者

Zhang, Binjie, Su, Shupeng, Ge, Yixiao, Xu, Xuyuan, Wang, Yexin, Yuan, Chun, Shou, Mike Zheng, Shan, Ying

论文摘要

传统的模型升级用于检索的范例需要在部署新型号之前重新计算所有画廊嵌入(称为“回填”),考虑到工业应用中数十亿美元的实例,这是非常昂贵且耗时的。 BCT提出了向后兼容模型升级以摆脱回填的第一步。它是可行的,但由于未分化的兼容性限制,新的模型在新功能歧视性和新的对年龄兼容性之间处于困境中。在这项工作中,我们提出了达尔文模型升级(DMU),该模型分别通过选择性的向后兼容性和正向适应来删除模型中的继承和变化。旧的遗传知识是通过旧特征歧视性来衡量的,画廊的特征,尤其是质量较差的特征,以轻量级的方式进化,以在新的潜在空间中变得更加适应性。我们通过对大规模地标检索和面部识别基准的全面实验来证明DMU的优势。 DMU有效地减轻了新的新降级并提高了新的兼容性,从而在大规模检索系统中升级了更合适的模型。

The traditional model upgrading paradigm for retrieval requires recomputing all gallery embeddings before deploying the new model (dubbed as "backfilling"), which is quite expensive and time-consuming considering billions of instances in industrial applications. BCT presents the first step towards backward-compatible model upgrades to get rid of backfilling. It is workable but leaves the new model in a dilemma between new feature discriminativeness and new-to-old compatibility due to the undifferentiated compatibility constraints. In this work, we propose Darwinian Model Upgrades (DMU), which disentangle the inheritance and variation in the model evolving with selective backward compatibility and forward adaptation, respectively. The old-to-new heritable knowledge is measured by old feature discriminativeness, and the gallery features, especially those of poor quality, are evolved in a lightweight manner to become more adaptive in the new latent space. We demonstrate the superiority of DMU through comprehensive experiments on large-scale landmark retrieval and face recognition benchmarks. DMU effectively alleviates the new-to-new degradation and improves new-to-old compatibility, rendering a more proper model upgrading paradigm in large-scale retrieval systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源