论文标题

通过亚估算式图形神经网络学习物理动力学

Learning Physical Dynamics with Subequivariant Graph Neural Networks

论文作者

Han, Jiaqi, Huang, Wenbing, Ma, Hengbo, Li, Jiachen, Tenenbaum, Joshua B., Gan, Chuang

论文摘要

图神经网络(GNN)已成为学习物理动态的流行工具。但是,它们仍然遇到几个挑战:1)物理定律遵守对称性,这是对模型概括的重要感应偏见,应将其纳入模型设计中。现有的模拟器要么考虑不足的对称性,要么在对称性因重力部分打破时,在实践中实践过度的均等性。 2)物理世界中的物体具有多种形状,大小和属性,该模型应适当处理。为了解决这些困难,我们提出了一个新型的骨干,亚等级图神经网络,1)通过考虑像重力等外部场,在理论上保持普遍近似能力,从而放松了与亚均衡性的均等。 2)引入了一个新的subivariant对象感知消息传递,用于学习基于粒子表示的各种形状的多个对象之间的物理相互作用; 3)以层次结构进行操作,允许建模长距离和复杂的相互作用。与最先进的GNN模拟器相比,我们的模型平均在8种情况下达到了3%以上的接触预测准确性,而在僵局上的推出MSE则平均达到了2倍的推出MSE,同时表现出强大的概括和数据效率。

Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics. However, they still encounter several challenges: 1) Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization and should be incorporated into the model design. Existing simulators either consider insufficient symmetry, or enforce excessive equivariance in practice when symmetry is partially broken by gravity. 2) Objects in the physical world possess diverse shapes, sizes, and properties, which should be appropriately processed by the model. To tackle these difficulties, we propose a novel backbone, Subequivariant Graph Neural Network, which 1) relaxes equivariance to subequivariance by considering external fields like gravity, where the universal approximation ability holds theoretically; 2) introduces a new subequivariant object-aware message passing for learning physical interactions between multiple objects of various shapes in the particle-based representation; 3) operates in a hierarchical fashion, allowing for modeling long-range and complex interactions. Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall compared with state-of-the-art GNN simulators, while exhibiting strong generalization and data efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源