论文标题

在亚分析集的全球平滑度上

On the degree of global smoothings for subanalytic sets

论文作者

Savi, Enrico

论文摘要

在[4]中,Bierstone和Parusinski证明了封闭的亚分析集的全球平滑性,无论是在嵌入式和非安装意义上。特别是,在未填充的降低过程中,作者构建了(通常)均匀程度的平滑,确实是众所周知的亚分析集的存在,这些集合的存在不承认(通常)奇数程度的未填充平滑。在本文中,我们为亚分析集引入了一种自然拓扑概念,我们证明了一个标准来确定封闭的亚分析集$ x $是否仅接受沿着非结合赤道的全球平滑度。详细介绍,我们证明,如果$ x $具有不符合的赤道$ y $,则每次平滑$ x $,这是连接的社区$ w $ $ y $的覆盖,甚至超过$ W $。

In [4] Bierstone and Parusinski proved the existence of global smoothings for closed subanalytic sets, both in an embedded and a non-embedded sense. In particular, in the non-embedded desingularization procedure the authors construct smoothings of (generically) even degree, indeed it is well-known the existence of subanalytic sets which do not admit non-embedded smoothings of (generically) odd degree. In this paper we introduce a natural topological notion of nonbounding equator for subanalytic sets and we prove a criterion to determine whether a closed subanalytic set $X$ only admits global smoothings of even degree along the nonbounding equator. More in detail, we prove that if $X$ has a nonbounding equator $Y$ then every smoothing of $X$ which is a covering on a connected neighborhood $W$ of $Y$ has even degree over $W$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源