论文标题
三方纠缠措施和经典交流
Tripartite entanglement measure under local operations and classical communication
论文作者
论文摘要
多部分纠缠是量子通信和计算中必不可少的资源,但是,忠实地量化多方量子系统的全球属性是一项艰巨的任务。在这项工作中,我们研究了同意填充,该填充填充了几何解释,以测量[S. xie {\ it等人},物理。莱特牧师。 \ textbf {127}。 040403(2021)]。首先,我们使用众所周知的三角和双分部分并发来对所有纯状态进行重新制定该量词。然后,我们构建一个明确的示例,以最终表明在本地操作和经典通信(LOCC){\ it平均}中可以增加同意填充,这意味着它不是纠缠单调的。此外,我们简单地证明了三键的LOCC单调性,并发现双方并发和平方在相同的LOCC下可以具有不同的性能。最后,我们提出了一个可靠的单调,以量化真正的三方纠缠,也可以很容易地将其推广到多方系统。我们的结果阐明了研究真正的纠缠,并揭示了多方系统的复杂结构。
Multipartite entanglement is an indispensable resource in quantum communication and computation, however, it is a challenging task to faithfully quantify this global property of multipartite quantum systems. In this work, we study the concurrence fill, which admits a geometric interpretation to measure genuine tripartite entanglement for the three-qubit system in [S. Xie {\it et al.}, Phys. Rev. Lett. \textbf{127}. 040403 (2021)]. First, we use the well-known three-tangle and bipartite concurrence to reformulate this quantifier for all pure states. We then construct an explicit example to conclusively show the concurrence fill can be increased under local operation and classical communications (LOCCs) {\it on average}, implying it is not an entanglement monotone. Moreover, we give a simple proof of the LOCC-monotonicity of three-tangle and find that the bipartite concurrence and the squared can have distinct performances under the same LOCCs. Finally, we propose a reliable monotone to quantify genuine tripartite entanglement, which can also be easily generalised to the multipartite system. Our results shed light on studying genuine entanglement and also reveal the complex structure of multipartite systems.