论文标题

等值:审计模型的小组等效微调

Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models

论文作者

Basu, Sourya, Sattigeri, Prasanna, Ramamurthy, Karthikeyan Natesan, Chenthamarakshan, Vijil, Varshney, Kush R., Varshney, Lav R., Das, Payel

论文摘要

我们介绍了Equi-Tuning,这是一种新颖的微调方法,它将预期的模型(潜在的非等级)模型转化为组模型模型,同时在预告片和e象模型的特征表示之间产生了最小$ L_2 $损失。可以对不同组的大型模型进行公正的态度,以满足各种下游任务的需求。等值模型受益于两种群体均衡性,作为电感偏差和审慎模型的语义先验。我们在三个不同的任务上提供了等值的应用:图像分类,语言中的组成概括以及自然语言生成(NLG)的公平性。我们还为NLG中的公平性提供了一种新颖的群体理论定义。该定义的有效性是通过根据NLG中的标准经验方法进行测试来显示的。我们使用多种验证的模型提供了实验结果:ALEXNET,RESNET,VGG和DENSENET用于图像分类;用于组成概括的RNN,GRU和LSTMS;和GPT2在NLG中公平。我们在所有被考虑的任务上在基准数据集上测试这些模型,以显示所提出方法的一般性和有效性。

We introduce equi-tuning, a novel fine-tuning method that transforms (potentially non-equivariant) pretrained models into group equivariant models while incurring minimum $L_2$ loss between the feature representations of the pretrained and the equivariant models. Large pretrained models can be equi-tuned for different groups to satisfy the needs of various downstream tasks. Equi-tuned models benefit from both group equivariance as an inductive bias and semantic priors from pretrained models. We provide applications of equi-tuning on three different tasks: image classification, compositional generalization in language, and fairness in natural language generation (NLG). We also provide a novel group-theoretic definition for fairness in NLG. The effectiveness of this definition is shown by testing it against a standard empirical method of fairness in NLG. We provide experimental results for equi-tuning using a variety of pretrained models: Alexnet, Resnet, VGG, and Densenet for image classification; RNNs, GRUs, and LSTMs for compositional generalization; and GPT2 for fairness in NLG. We test these models on benchmark datasets across all considered tasks to show the generality and effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源