论文标题
等值:审计模型的小组等效微调
Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models
论文作者
论文摘要
我们介绍了Equi-Tuning,这是一种新颖的微调方法,它将预期的模型(潜在的非等级)模型转化为组模型模型,同时在预告片和e象模型的特征表示之间产生了最小$ L_2 $损失。可以对不同组的大型模型进行公正的态度,以满足各种下游任务的需求。等值模型受益于两种群体均衡性,作为电感偏差和审慎模型的语义先验。我们在三个不同的任务上提供了等值的应用:图像分类,语言中的组成概括以及自然语言生成(NLG)的公平性。我们还为NLG中的公平性提供了一种新颖的群体理论定义。该定义的有效性是通过根据NLG中的标准经验方法进行测试来显示的。我们使用多种验证的模型提供了实验结果:ALEXNET,RESNET,VGG和DENSENET用于图像分类;用于组成概括的RNN,GRU和LSTMS;和GPT2在NLG中公平。我们在所有被考虑的任务上在基准数据集上测试这些模型,以显示所提出方法的一般性和有效性。
We introduce equi-tuning, a novel fine-tuning method that transforms (potentially non-equivariant) pretrained models into group equivariant models while incurring minimum $L_2$ loss between the feature representations of the pretrained and the equivariant models. Large pretrained models can be equi-tuned for different groups to satisfy the needs of various downstream tasks. Equi-tuned models benefit from both group equivariance as an inductive bias and semantic priors from pretrained models. We provide applications of equi-tuning on three different tasks: image classification, compositional generalization in language, and fairness in natural language generation (NLG). We also provide a novel group-theoretic definition for fairness in NLG. The effectiveness of this definition is shown by testing it against a standard empirical method of fairness in NLG. We provide experimental results for equi-tuning using a variety of pretrained models: Alexnet, Resnet, VGG, and Densenet for image classification; RNNs, GRUs, and LSTMs for compositional generalization; and GPT2 for fairness in NLG. We test these models on benchmark datasets across all considered tasks to show the generality and effectiveness of the proposed method.