论文标题

交织的最大值与非单位核的翻译函数的交织

Intertwining of maxima of sum of translates functions with nonsingular kernels

论文作者

Farkas, Bálint, Nagy, Béla, Révész, Szilárd Gy.

论文摘要

在以前的论文中,我们调查了所谓的翻译函数总和$ f({\ mathbf {x}},t):= j(t)+\ sum_ {j = 1}^nν_jk(t-x_j)$,其中$ j:[0,1] \下划线{\ Mathbb {r}}:= {\ MathBb {r}} \ cup \ { - \ fty \} $是“足够无脱位”和上型的“野外功能”,$ k:[ - 1,1]在$(-1,0)$和$(0,1)$上,还满足奇异条件$ k(0)= \ lim_ {t \ to 0} k(t)= - \ infty $。对于节点系统$ {\ mathbf {x}}}:=(x_1,\ ldots,x_n)$ with $ x_0:= 0 \ le x_1 \ le x_1 \ le \ le \ dots \ le x_n \ le x_n \ le 1 =:x__ {n+1} $,我们分析了当地的maxima vector的行为$ {\ mathbf {m}}}:=(m_0,m_1,\ ldots,m_n)$,其中$ m_j:= m_j({\ mathbf {x}}}}}:= \ sup_ {x_j \ le x_j \ le t \ le t \ le t \ le x____ {j+1}}除其他结果外,我们证明了一个强大的交织属性:如果核对$(-1,0)$的内核也下降,并且在$(0,1)$上增加,并且现场功能是上半连续的,那么对于任何两个不同的节点系统,$ i,j $,j $ a,j $ y, $ M_J({\ Mathbf {x}})> m_j({\ Mathbf {y}})$。在这里,我们部分成功地将其扩展到非语言内核。

In previous papers we investigated so-called sum of translates functions $F({\mathbf{x}},t):=J(t)+\sum_{j=1}^n ν_j K(t-x_j)$, where $J:[0,1]\to \underline{\mathbb{R}}:={\mathbb{R}}\cup\{-\infty\}$ is a "sufficiently nondegenerate" and upper-bounded "field function", and $K:[-1,1]\to \underline{\mathbb{R}}$ is a fixed "kernel function", concave both on $(-1,0)$ and $(0,1)$, and also satisfying the singularity condition $K(0)=\lim_{t\to 0} K(t)=-\infty$. For node systems ${\mathbf{x}}:=(x_1,\ldots,x_n)$ with $x_0:=0\le x_1\le\dots\le x_n\le 1=:x_{n+1}$, we analyzed the behavior of the local maxima vector ${\mathbf{m}}:=(m_0,m_1,\ldots,m_n)$, where $m_j:=m_j({\mathbf{x}}):=\sup_{x_j\le t\le x_{j+1}} F({\mathbf{x}},t)$. Among other results we proved a strong intertwining property: if the kernels are also decreasing on $(-1,0)$ and increasing on $(0,1)$, and the field function is upper semicontinuous, then for any two different node systems there are $i,j$ such that $m_i({\mathbf{x}})<m_i({\mathbf{y}})$ and $m_j({\mathbf{x}})>m_j({\mathbf{y}})$. Here we partially succeed to extend this even to nonsingular kernels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源