论文标题

跨任务神经架构搜索脑电图信号分类

Cross Task Neural Architecture Search for EEG Signal Classifications

论文作者

Duan, Yiqun, Wang, Zhen, Li, Yi, Tang, Jianhang, Wang, Yu-Kai, Lin, Chin-Teng

论文摘要

脑电图(EEG)是在大脑外测量的脑动力学,在非侵入性脑部计算机界面应用中已广泛使用。最近,已经提出了各种神经网络方法来提高脑电图识别的准确性。但是,这些方法严重依赖于手动设计的网络结构来用于不同任务,这些任务通常不共享相同的经验设计。在本文中,我们提出了用于EEG信号识别的跨任务神经体系结构搜索(CTNAS-EEG)框架,该框架可以自动设计跨任务的网络结构并提高脑电图信号的识别精度。具体而言,提出了一个兼容的搜索空间,用于搜索和有效的约束搜索方法,以克服EEG信号带来的挑战。通过在不同的脑电图任务上统一结构搜索,这项工作是第一个探索和分析搜索结构差异交叉任务的工作。此外,通过介绍架构搜索,这项工作是第一个通过为每个人类主题定制模型结构来分析模型性能的工作。详细的实验结果表明,所提出的CTNAS-EEG可以在不同的脑电图任务上达到最新的性能,例如运动图像(MI)和情感识别。为后续研究人员提供了广泛的实验和详细分析。

Electroencephalograms (EEGs) are brain dynamics measured outside the brain, which have been widely utilized in non-invasive brain-computer interface applications. Recently, various neural network approaches have been proposed to improve the accuracy of EEG signal recognition. However, these approaches severely rely on manually designed network structures for different tasks which generally are not sharing the same empirical design cross-task-wise. In this paper, we propose a cross-task neural architecture search (CTNAS-EEG) framework for EEG signal recognition, which can automatically design the network structure across tasks and improve the recognition accuracy of EEG signals. Specifically, a compatible search space for cross-task searching and an efficient constrained searching method is proposed to overcome challenges brought by EEG signals. By unifying structure search on different EEG tasks, this work is the first to explore and analyze the searched structure difference cross-task-wise. Moreover, by introducing architecture search, this work is the first to analyze model performance by customizing model structure for each human subject. Detailed experimental results suggest that the proposed CTNAS-EEG could reach state-of-the-art performance on different EEG tasks, such as Motor Imagery (MI) and Emotion recognition. Extensive experiments and detailed analysis are provided as a good reference for follow-up researchers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源