论文标题
Cleegn:用于插件自动EEG重建的卷积神经网络
CLEEGN: A Convolutional Neural Network for Plug-and-Play Automatic EEG Reconstruction
论文作者
论文摘要
人脑电图(EEG)是一种大脑监测方式,在高颞分辨率中感受到皮质神经电机生理活性。脑电图应用中提出的最大挑战之一是在录音过程中容易受到不可避免的文物的不稳定信号质量。迄今为止,大多数现有的脑电图删除和重建技术仅适用于离线分析,或者需要个性化的培训数据以促进在线重建。我们提出了Cleegn,这是一种新型的卷积神经网络,用于插电自动EEG重建。 Cleegn基于使用现有数据的独立于主题的预训练模型,并且可以在新用户上操作而无需任何进一步的校准。使用多次评估(包括波形观察,重建误差评估评估以及对经过良好的标记数据集的解码精度)对CleeGn的性能进行了验证。模拟在线验证的结果表明,即使没有进行任何校准,Cleegn也可以在很大程度上保留固有的大脑活动,并且在重建的EEG数据的解码准确性方面胜过领导在线/离线伪影方法。此外,模型参数和潜在特征的可视化表现出模型行为,并揭示了与现有神经科学知识相关的可解释见解。我们预见了Cleegn在在线插件销售EEG解码和分析的前瞻性作品中的普遍应用。
Human electroencephalography (EEG) is a brain monitoring modality that senses cortical neuroelectrophysiological activity in high-temporal resolution. One of the greatest challenges posed in applications of EEG is the unstable signal quality susceptible to inevitable artifacts during recordings. To date, most existing techniques for EEG artifact removal and reconstruction are applicable to offline analysis solely, or require individualized training data to facilitate online reconstruction. We have proposed CLEEGN, a novel convolutional neural network for plug-and-play automatic EEG reconstruction. CLEEGN is based on a subject-independent pre-trained model using existing data and can operate on a new user without any further calibration. The performance of CLEEGN was validated using multiple evaluations including waveform observation, reconstruction error assessment, and decoding accuracy on well-studied labeled datasets. The results of simulated online validation suggest that, even without any calibration, CLEEGN can largely preserve inherent brain activity and outperforms leading online/offline artifact removal methods in the decoding accuracy of reconstructed EEG data. In addition, visualization of model parameters and latent features exhibit the model behavior and reveal explainable insights related to existing knowledge of neuroscience. We foresee pervasive applications of CLEEGN in prospective works of online plug-and-play EEG decoding and analysis.