论文标题
通过问题和答案分析的话语分析:讨论中的问题的解析依赖性结构
Discourse Analysis via Questions and Answers: Parsing Dependency Structures of Questions Under Discussion
论文作者
论文摘要
自动话语处理被数据瓶颈:当前的话语形式主义构成了高度要求的注释任务,这些任务涉及大量的话语关系分类法,这使得它们无法访问注释者。相反,这项工作采用了正在讨论的问题的语言框架(QUD)进行演讲分析,并试图自动得出QUD结构。 qud将每个句子视为对先前上下文中触发的问题的答案;因此,我们将句子之间的关系描述为自由形式的问题,与详尽的细粒分类法相反。我们开发了首个Qud Qud解析器,该解析器通过完整文档的依赖性结构得出了依赖性的结构,该文件是使用大型众包提问的数据集DCQA培训的(Ko等,2022)。人类评估结果表明,使用该众包,可推广的注释方案训练的语言模型可以进行QUD依赖性解析。我们说明了我们的QUD结构与第一树的不同之处,并在文档简化的背景下演示了QUD分析的实用性。我们的发现表明,QUD解析是自动话语处理的一种有吸引力的替代方法。
Automatic discourse processing is bottlenecked by data: current discourse formalisms pose highly demanding annotation tasks involving large taxonomies of discourse relations, making them inaccessible to lay annotators. This work instead adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis and seeks to derive QUD structures automatically. QUD views each sentence as an answer to a question triggered in prior context; thus, we characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained taxonomies. We develop the first-of-its-kind QUD parser that derives a dependency structure of questions over full documents, trained using a large, crowdsourced question-answering dataset DCQA (Ko et al., 2022). Human evaluation results show that QUD dependency parsing is possible for language models trained with this crowdsourced, generalizable annotation scheme. We illustrate how our QUD structure is distinct from RST trees, and demonstrate the utility of QUD analysis in the context of document simplification. Our findings show that QUD parsing is an appealing alternative for automatic discourse processing.