论文标题

应用应用程序问题的有效神经网络和有限差异混合方法

An efficient neural-network and finite-difference hybrid method for elliptic interface problems with applications

论文作者

Hu, Wei-Fan, Lin, Te-Sheng, Tseng, Yu-Hau, Lai, Ming-Chih

论文摘要

开发了一种新的,有效的神经网络和有限差异混合方法,用于在嵌入式不规则界面上具有跳跃不连续性的常规域中求解泊松方程。由于该解决方案在整个界面上的规律性较低,因此在将有限差分离散化到此问题时,必须采用额外的治疗方法。在这里,我们旨在提高这种额外的努力,以通过机器学习方法来简化我们的实施。关键的想法是将溶液分解为单数和常规零件。结合给定跳跃条件的神经网络学习机制找到了单数解,而标准的五点拉普拉斯离散化用于获得具有相关边界条件的常规解决方案。无论接口几何形状如何,这两个任务都只需要监督的学习近似学习,而对于泊松方程的快速直接求解器,使混合方法易于实现和高效。二维数值结果表明,目前的混合方法可保留溶液及其衍生物的二阶精度,并且与文献中传统的浸入式界面方法相媲美。作为应用程序,我们用奇异力来求解Stokes方程,以证明本方法的鲁棒性。

A new and efficient neural-network and finite-difference hybrid method is developed for solving Poisson equation in a regular domain with jump discontinuities on embedded irregular interfaces. Since the solution has low regularity across the interface, when applying finite difference discretization to this problem, an additional treatment accounting for the jump discontinuities must be employed. Here, we aim to elevate such an extra effort to ease our implementation by machine learning methodology. The key idea is to decompose the solution into singular and regular parts. The neural network learning machinery incorporating the given jump conditions finds the singular solution, while the standard five-point Laplacian discretization is used to obtain the regular solution with associated boundary conditions. Regardless of the interface geometry, these two tasks only require supervised learning for function approximation and a fast direct solver for Poisson equation, making the hybrid method easy to implement and efficient. The two- and three-dimensional numerical results show that the present hybrid method preserves second-order accuracy for the solution and its derivatives, and it is comparable with the traditional immersed interface method in the literature. As an application, we solve the Stokes equations with singular forces to demonstrate the robustness of the present method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源