论文标题

地球作为系外行星。 ii。地球的时间变化热排放及其生物招聘的大气季节性

Earth as an Exoplanet. II. Earth's Time-variable Thermal Emission and Its Atmospheric Seasonality of Bioindicators

论文作者

Mettler, Jean-Noel, Quanz, Sascha P., Helled, Ravit, Olson, Stephanie L., Schwieterman, Edward W.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We assess the dependence of Earth's disk-integrated mid-infrared thermal emission spectrum on observation geometries and investigate which and how spectral features are impacted by seasonality on Earth. We compiled an exclusive dataset containing 2690 disk-integrated thermal emission spectra for four different full-disk observing geometries (North & South Pole centered and Africa & Pacific centred equatorial views) over four consecutive years. The spectra were derived from 2378 spectral channels in the wavelength range from 3.75 to 15.4 micron (nominal resolution $\approx$ 1200) and were recorded by the Atmospheric Infrared Sounder aboard the Aqua satellite. We learned that there is significant seasonal variability in Earth's thermal emission spectrum, and the strength of spectral features of bio-indicators, such as N2O, CH4, O3 and CO2 depends strongly on both season and viewing geometry. In addition, we found a strong spectral degeneracy with respect to the latter two indicating that multi-epoch measurements and time-dependent signals may be required in order to fully characterize planetary environments. Even for Earth and especially for equatorial views, the variations in flux and strength of absorption features in the disk-integrated data are small and typically $\le$ 10%. Disentangling these variations from the noise in future exoplanet observations will be a challenge. However, irrespectively of when the planet will be measured (i.e., day or night or season) the results from mid-infrared observations will remain the same to the zeroth order which is an advantage over reflected light observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源