论文标题

部分可观测时空混沌系统的无模型预测

Constructing Prediction Intervals with Neural Networks: An Empirical Evaluation of Bootstrapping and Conformal Inference Methods

论文作者

Contarino, Alex, Kabban, Christine Schubert, Johnstone, Chancellor, Mohd-Zaid, Fairul

论文摘要

人工神经网络(ANN)是完成许多机器学习任务的流行工具,包括预测连续的结果。但是,ANN预测提供的普遍缺乏置信度限制了其适用性。用预测间隔(PI)补充点预测对于其他学习算法很常见,但是ANN的复杂结构和训练使构建PI的复杂结构和训练困难。这项工作提供了网络设计选择和推论方法,以通过ANN创建更好的性能PI。在11个数据集中进行了两步实验,包括基于成像的数据集。考虑了两种用于构建PI的无分布方法,引导和共形推断。第一个实验步骤的结果表明,构建ANN固有的选择会影响PI性能。提供了针对每个网络功能和PI方法优化PI性能的指南。在第二步中,实施了20种用于构建PI的算法,每种算法使用自举或共形推理的原理,以确定哪些提供了最佳性能,同时保持合理的计算负担。通常,在实施跨符号方法时,这一权衡将得到优化,该方法在计算负担下保持了间隔覆盖率和效率。

Artificial neural networks (ANNs) are popular tools for accomplishing many machine learning tasks, including predicting continuous outcomes. However, the general lack of confidence measures provided with ANN predictions limit their applicability. Supplementing point predictions with prediction intervals (PIs) is common for other learning algorithms, but the complex structure and training of ANNs renders constructing PIs difficult. This work provides the network design choices and inferential methods for creating better performing PIs with ANNs. A two-step experiment is executed across 11 data sets, including an imaged-based data set. Two distribution-free methods for constructing PIs, bootstrapping and conformal inference, are considered. The results of the first experimental step reveal that the choices inherent to building an ANN affect PI performance. Guidance is provided for optimizing PI performance with respect to each network feature and PI method. In the second step, 20 algorithms for constructing PIs, each using the principles of bootstrapping or conformal inference, are implemented to determine which provides the best performance while maintaining reasonable computational burden. In general, this trade-off is optimized when implementing the cross-conformal method, which maintained interval coverage and efficiency with decreased computational burden.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源