论文标题
扩展维度:派生的等价和稳定的等价
Extension dimensions: derived equivalences and stable equivalences
论文作者
论文摘要
我们表明,两个派生等效代数的扩展维度的差位在上面是与与派生的等价相关的倾斜复合物的最小长度,并且在稳定的等效性下,扩展维度是不变的。此外,我们提供了两个足够的条件,以便在特定派生的等价方面的扩展维度是不变的。
We show that the difference of the extension dimensions of two derived equivalent algebras is bounded above by the minimal length of a tilting complex associated with a derived equivalence, and that the extension dimension is an invariant under the stable equivalence. In addition, we provide two sufficient conditions such that the extension dimension is an invariant under particular derived equivalences.