论文标题
火星早期的宜居性和基于H2的甲烷剂的全球冷却
Early Mars' habitability and global cooling by H2-based methanogens
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
During the Noachian, Mars' crust may have provided a favorable environment for microbial life. The porous brine-saturated regolith would have created a physical space sheltered from UV and cosmic radiations and provided a solvent, while the below-ground temperature and diffusion of a dense reduced atmosphere may have supported simple microbial organisms that consume H2 and CO2 as energy and carbon sources and produce methane as a waste. On Earth, hydrogenotrophic methanogenesis was among the earliest metabolisms but its viability on early Mars has never been quantitatively evaluated. Here we present a probabilistic assessment of Mars' Noachian habitability to H2-based methanogens, and quantify their biological feedback on Mars' atmosphere and climate. We find that subsurface habitability was very likely, and limited mainly by the extent of surface ice coverage. Biomass productivity could have been as high as in early Earth's ocean. However, the predicted atmospheric composition shift caused by methanogenesis would have triggered a global cooling event, ending potential early warm conditions, compromising surface habitability and forcing the biosphere deep into the Martian crust. Spatial projections of our predictions point to lowland sites at low-to-medium latitudes as good candidates to uncover traces of this early life at or near the surface.