论文标题
在随机场景中的极端属性上的一些特性
Some properties on extremes for transient random walks in random sceneries
论文作者
论文摘要
令$(s_n)_ {n \ geq 0} $为稳定定律吸引的域中的瞬态随机步行,让$(ξ(s))_ {s \ in \ mathbb {z}} $是随机变量的平稳序列。在先前的工作中,在类型$ d(u_n)$和$ d'(u_n)$的条件下,我们建立了一个限制定理,以最大值的序列$(ξ(s_n))的第一个$ n $项的最大值_ {n \ geq 0} $作为$ n $。在本文中,我们表明,在相同的条件下,在适当的缩放缩放下,超出点过程会收敛到泊松点过程。我们还提供了$(ξ(s_n))_ {n \ geq 0} $的一些属性。
Let $(S_n)_{n \geq 0}$ be a transient random walk in the domain of attraction of a stable law and let $(ξ(s))_{s \in \mathbb{Z}}$ be a stationary sequence of random variables. In a previous work, under conditions of type $D(u_n)$ and $D'(u_n)$, we established a limit theorem for the maximum of the first $n$ terms of the sequence $(ξ(S_n))_{n\geq 0}$ as $n$ goes to infinity. In this paper we show that, under the same conditions and under a suitable scaling, the point process of exceedances converges to a Poisson point process. We also give some properties of $(ξ(S_n))_{n\geq 0}$.