论文标题
贝叶斯的稀疏回归用于混合多回散散文,并应用于雾制造中的运行时指标预测
Bayesian Sparse Regression for Mixed Multi-Responses with Application to Runtime Metrics Prediction in Fog Manufacturing
论文作者
论文摘要
雾制造可以通过分布式雾计算单元极大地增强传统制造系统,这些计算单元受不同工业互联网体系结构下的预测计算工作负载卸载方法的约束。众所周知,预测卸载方法高度依赖于准确的预测和不确定性定量运行时性能指标,其中包含多元混合型响应(即连续,计数,二进制)。在这项工作中,我们提出了一种贝叶斯稀疏回归,用于多元混合反应,以增强运行时性能指标的预测并启用统计推断。所提出的方法考虑了组和个体变量选择,以共同对运行时性能指标的混合类型进行建模。使用Precision矩阵通过图形模型描述了多个响应之间的条件依赖性,其中Spike and-Slab先验用于实现图形的稀疏估计。所提出的方法不仅可以实现准确的预测,而且还使预测模型对模型参数的统计推断和雾制造中的预测更加可解释。进行了模拟研究和雾制造中的真实示例,以证明所提出的模型的优点。
Fog manufacturing can greatly enhance traditional manufacturing systems through distributed Fog computation units, which are governed by predictive computational workload offloading methods under different Industrial Internet architectures. It is known that the predictive offloading methods highly depend on accurate prediction and uncertainty quantification of runtime performance metrics, containing multivariate mixed-type responses (i.e., continuous, counting, binary). In this work, we propose a Bayesian sparse regression for multivariate mixed responses to enhance the prediction of runtime performance metrics and to enable the statistical inferences. The proposed method considers both group and individual variable selection to jointly model the mixed types of runtime performance metrics. The conditional dependency among multiple responses is described by a graphical model using the precision matrix, where a spike-and-slab prior is used to enable the sparse estimation of the graph. The proposed method not only achieves accurate prediction, but also makes the predictive model more interpretable with statistical inferences on model parameters and prediction in the Fog manufacturing. A simulation study and a real case example in a Fog manufacturing are conducted to demonstrate the merits of the proposed model.