论文标题

在跨语言零击设置中,多种语言模型可鲁棒化,并具有强大的对比度预处理

Robustification of Multilingual Language Models to Real-world Noise in Crosslingual Zero-shot Settings with Robust Contrastive Pretraining

论文作者

Stickland, Asa Cooper, Sengupta, Sailik, Krone, Jason, Mansour, Saab, He, He

论文摘要

神经建模的进步已经取得了最新的(SOTA)公共自然语言处理(NLP)基准的结果,有时超过了人类绩效。但是,公共基准和现实世界应用之间存在差距,其中噪声(例如印刷或语法错误)很丰富,并且可能导致性能降解。不幸的是,评估神经模型在嘈杂数据上的鲁棒性并提出改进的作品仅限于英语。在分析不同语言的噪声后,我们观察到噪声类型在各种语言之间差异很大。因此,现有的调查并未琐碎地推广到多语言设置。为了基准测试经过审计的多语言模型的性能,我们构建了涵盖五种语言和四个NLP任务的嘈杂数据集,并在零拍的跨语言设置中观察到清洁和嘈杂数据之间的性能存在明显的差距。在研究了在这种情况下增强多语言模型的鲁棒性的几种方法之后,我们提出了鲁棒的对比训练预处理(RCP)。 RCP将数据增强与在训练阶段的对比损失项相结合,并在两个句子级别(+3.2%)和两个序列标记(+10 F1-SCORE)多种方面分类任务上对嘈杂(和原始测试数据)进行了巨大改进。

Advances in neural modeling have achieved state-of-the-art (SOTA) results on public natural language processing (NLP) benchmarks, at times surpassing human performance. However, there is a gap between public benchmarks and real-world applications where noise, such as typographical or grammatical mistakes, is abundant and can result in degraded performance. Unfortunately, works which evaluate the robustness of neural models on noisy data and propose improvements, are limited to the English language. Upon analyzing noise in different languages, we observe that noise types vary greatly across languages. Thus, existing investigations do not generalize trivially to multilingual settings. To benchmark the performance of pretrained multilingual language models, we construct noisy datasets covering five languages and four NLP tasks and observe a clear gap in the performance between clean and noisy data in the zero-shot cross-lingual setting. After investigating several ways to boost the robustness of multilingual models in this setting, we propose Robust Contrastive Pretraining (RCP). RCP combines data augmentation with a contrastive loss term at the pretraining stage and achieves large improvements on noisy (and original test data) across two sentence-level (+3.2%) and two sequence-labeling (+10 F1-score) multilingual classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源