论文标题

部分可观测时空混沌系统的无模型预测

Are All Steps Equally Important? Benchmarking Essentiality Detection of Events

论文作者

Wang, Haoyu, Zhang, Hongming, Wang, Yueguan, Deng, Yuqian, Chen, Muhao, Roth, Dan

论文摘要

自然语言以不同的粒度表达事件,其中粗粒事件(目标)可以分解为细粒度的事件序列(步骤)。理解事件过程的一个关键但被忽视的方面是认识到,并非所有步骤事件对于完成目标都具有同等的重要性。在本文中,我们通过研究当前模型在多大程度上理解与目标事件有关的步骤事件的重要性的程度。认知研究表明,这种能力使机器能够模仿人类的常识性推理预先解决的前提和日常任务的必要努力。我们为从社区指南网站Wikihow收集的高质量(目标,步骤)的高质量语料库,并手​​动注释了专家对目标的重要性。高通道的一致性表明,人类对事件的本质有一致的理解。但是,在评估了多个统计和大规模训练的语言模型之后,我们发现与人类相比,现有方法的表现差不多。这种观察凸显了需要进一步探索这一至关重要和具有挑战性的任务。该数据集和代码可在http://cogcomp.org/page/publication_view/1023上找到。

Natural language expresses events with varying granularities, where coarse-grained events (goals) can be broken down into finer-grained event sequences (steps). A critical yet overlooked aspect of understanding event processes is recognizing that not all step events hold equal importance toward the completion of a goal. In this paper, we address this gap by examining the extent to which current models comprehend the essentiality of step events in relation to a goal event. Cognitive studies suggest that such capability enables machines to emulate human commonsense reasoning about preconditions and necessary efforts of everyday tasks. We contribute a high-quality corpus of (goal, step) pairs gathered from the community guideline website WikiHow, with steps manually annotated for their essentiality concerning the goal by experts. The high inter-annotator agreement demonstrates that humans possess a consistent understanding of event essentiality. However, after evaluating multiple statistical and largescale pre-trained language models, we find that existing approaches considerably underperform compared to humans. This observation highlights the need for further exploration into this critical and challenging task. The dataset and code are available at http://cogcomp.org/page/publication_view/1023.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源