论文标题

双阶段对CBCT扫描中下颌管分割的深度监督基于注意力的卷积神经网络

Dual-Stage Deeply Supervised Attention-based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans

论文作者

Rehman, Azka, Usman, Muhammad, Jawaid, Rabeea, Saleem, Amal Muhammad, Byon, Shi Sub, Kim, Sung Hyun, Lee, Byoung Dai, Lee, Byung il, Shin, Yeong Gil

论文摘要

在牙科植入学中,准确分割下颌骨的下颌管很重要。医学专家从3D CT图像手动确定植入物位置和尺寸,以避免损坏运河内的下颌神经。在本文中,我们提出了一种新型的双阶段深度学习方案,用于自动分割下颌运河。特别是,我们首先通过采用基于直方图的动态窗口方案来增强CBCT扫描,从而提高了下颌管的可见性。增强后,我们设计了3D对U-NET体系结构进行了深入监督,以定位感兴趣的数量(VOI),其中包含下颌管(即左右运河)。最后,我们使用多尺度输入剩余U-NET体系结构(MS-R-UNET)准确地使用VOI分割了下颌管。该方法对500次扫描进行了严格评估。结果表明,我们的技术优于当前的最新分割性能和鲁棒性方法。

Accurate segmentation of mandibular canals in lower jaws is important in dental implantology. Medical experts determine the implant position and dimensions manually from 3D CT images to avoid damaging the mandibular nerve inside the canal. In this paper, we propose a novel dual-stage deep learning-based scheme for the automatic segmentation of the mandibular canal. Particularly, we first enhance the CBCT scans by employing the novel histogram-based dynamic windowing scheme, which improves the visibility of mandibular canals. After enhancement, we design 3D deeply supervised attention U-Net architecture for localizing the volumes of interest (VOIs), which contain the mandibular canals (i.e., left and right canals). Finally, we employed the multi-scale input residual U-Net architecture (MS-R-UNet) to segment the mandibular canals using VOIs accurately. The proposed method has been rigorously evaluated on 500 scans. The results demonstrate that our technique outperforms the current state-of-the-art segmentation performance and robustness methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源