论文标题
高空曲面的施泰纳表示
Steiner representations of hypersurfaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $X\subseteq{\mathbb P}^{n+1}$ be an integral hypersurface of degree $d$. We show that each locally Cohen-Macaulay instanton sheaf $\mathcal E$ on $X$ with respect to $\mathcal O_X\otimes\mathcal O_{\mathbb P^{n+1}}(1)$ in the sense of Definition 1.3 in arXiv:2205.04767 [math.AG] yields the existence of Steiner bundles $\mathcal G$ and $\mathcal F$ on $\mathbb P^{n+1}$ of the same rank $r$ and a morphism $φ\colon \mathcal G(-1)\to\mathcal F^\vee$ such that the form defining $X$ to the power $\mathrm{rk}(\mathcal E)$ is exactly $\det(φ)$. We inspect several examples for low values of $d$, $n$ and $\mathrm{rk}(\mathcal E)$. In particular, we show that the form defining a smooth integral surface in $\mathbb P^3$ is the pfaffian of some skew-symmetric morphism $φ\colon \mathcal F(-1)\to\mathcal F^\vee$, where $\mathcal F$ is a suitable Steiner bundle on $\mathbb P^3$ of sufficiently large even rank.