论文标题
部分可观测时空混沌系统的无模型预测
Maximizing the Mostar index for bipartite graphs and split graphs
论文作者
论文摘要
došlić等人〜将图$ g $的最大索引定义为$ \ sum \ limits_ {uv \ in E(g)} | n_g(g)} | n_g(u,v)-n_g(v,v,u)| $,在其中,对于$ g $ $ g $ g $,$ n_g(u,v)比$ v $。为došlić等人提出的猜想做出了贡献,我们表明,$ n $的两部分图的最多索引最多是$ \ frac {\ sqrt {\ sqrt {3}} {18} n^3 $,并且最多是$ n $ $ n $ $ \ frac $ \ frac} n}的最多的$ n $ splate index。
Došlić et al.~defined the Mostar index of a graph $G$ as $\sum\limits_{uv\in E(G)}|n_G(u,v)-n_G(v,u)|$, where, for an edge $uv$ of $G$, the term $n_G(u,v)$ denotes the number of vertices of $G$ that have a smaller distance in $G$ to $u$ than to $v$. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order $n$ is at most $\frac{\sqrt{3}}{18}n^3$, and that the Mostar index of split graphs of order $n$ is at most $\frac{4}{27}n^3$.