论文标题

部分可观测时空混沌系统的无模型预测

Maximizing the Mostar index for bipartite graphs and split graphs

论文作者

Miklavič, Štefko, Pardey, Johannes, Rautenbach, Dieter, Werner, Florian

论文摘要

došlić等人〜将图$ g $的最大索引定义为$ \ sum \ limits_ {uv \ in E(g)} | n_g(g)} | n_g(u,v)-n_g(v,v,u)| $,在其中,对于$ g $ $ g $ g $,$ n_g(u,v)比$ v $。为došlić等人提出的猜想做出了贡献,我们表明,$ n $的两部分图的最多索引最多是$ \ frac {\ sqrt {\ sqrt {3}} {18} n^3 $,并且最多是$ n $ $ n $ $ \ frac $ \ frac} n}的最多的$ n $ splate index。

Došlić et al.~defined the Mostar index of a graph $G$ as $\sum\limits_{uv\in E(G)}|n_G(u,v)-n_G(v,u)|$, where, for an edge $uv$ of $G$, the term $n_G(u,v)$ denotes the number of vertices of $G$ that have a smaller distance in $G$ to $u$ than to $v$. Contributing to conjectures posed by Došlić et al., we show that the Mostar index of bipartite graphs of order $n$ is at most $\frac{\sqrt{3}}{18}n^3$, and that the Mostar index of split graphs of order $n$ is at most $\frac{4}{27}n^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源