论文标题
与竞争非线性的旋转轨道耦合玻色子凝结物中的涡旋间隙孤子子
Vortex gap solitons in spin-orbit-coupled Bose-Einstein condensates with competing nonlinearities
论文作者
论文摘要
在两个组成的玻色 - 因斯坦与自旋轨道耦合(SOC),Zeeman拆分(ZS)和竞争的立方和Quintic非线性术语中,研究了全涡状间隙孤子(FVGSS)(FVGSS)的形成和动力学(FVGSS),同时忽略了通常的Kinetic Kinetic Energy术语,并认为它比通常的Kinetic Kinetic Energe忽略了SOIS和SIC的ZS和ZS。与以前的SOC系统不同,只有立方诱人的非线性,其中单独的半涡度可能是稳定的,并且单个组件带有涡度,目前的系统支持稳定的FVGS状态,并且在两个组件中都存在涡度(此类状态在这里被称为此类状态(在这里称为Full vortex Solitons),以强调与半毒素的差异)。它们填充了系统线性频谱中的带隙。在立方自动吸引和五分之一的抑制的情况下,具有阳性有效质量的稳定FVGS在带隙的顶部附近存在。相反,具有立方自我抑制和五重吸引力的系统会产生稳定的FVGS,在带隙底部附近,负质量为负质量。还研究了具有不同拓扑费用的FVGS的流动性和碰撞。
The formation and dynamics of full vortex gap solitons (FVGSs) is investigated in two-component Bose-Einstein condensates with spin-orbit coupling (SOC), Zeeman splitting (ZS), and competing cubic and quintic nonlinear terms, while the usual kinetic energy is neglected, assuming that it is much smaller than the SOC and ZS terms. Unlike previous SOC system with the cubic-only attractive nonlinearity, in which solely semi-vortices may be stable, with the vorticity carried by a single component, the present system supports stable FVGS states, with the vorticity present in both components (such states are called here full vortex solitons, to stress the difference from the half-vortices). They populate the bandgap in the system's linear spectrum. In the case of the cubic self-attraction and quintic repulsion, stable FVGSs with a positive effective mass exist near the top of the bandgap. On the contrary, the system with cubic self-repulsion and quintic attraction produces stable FVGSs with a negative mass near the bottom of the bandgap. Mobility and collisions of FVGSs with different topological charges are investigated too.