论文标题

癌症研究的综合成像信息学:神经肿瘤学的工作流程自动化(I3CR-WANO)

Integrative Imaging Informatics for Cancer Research: Workflow Automation for Neuro-oncology (I3CR-WANO)

论文作者

Chakrabarty, Satrajit, Abidi, Syed Amaan, Mousa, Mina, Mokkarala, Mahati, Hren, Isabelle, Yadav, Divya, Kelsey, Matthew, LaMontagne, Pamela, Wood, John, Adams, Michael, Su, Yuzhuo, Thorpe, Sherry, Chung, Caroline, Sotiras, Aristeidis, Marcus, Daniel S.

论文摘要

由于数据异质性,利用不断增长的临床成像数据来产生肿瘤评估的努力继续需要大量的手动数据。在这里,我们提出了一种基于人工智能的解决方案,用于聚集和处理多探针神经肿瘤学MRI数据,以提取定量肿瘤测量值。我们的端到端框架i)使用集合分类器进行MRI序列,ii)以可重复的方式预处理数据,iii)使用卷积神经网络描述肿瘤组织亚型,iv)提取多样的放射性特征。此外,缺少序列并采用专家界的方法是可靠的,在这种方法中,放射科医生可以手动完善分割结果。在Docker容器中实施该框架之后,它被应用于从华盛顿大学医学院(WUSM; n = 384)和M.D. Anderson Cancer Center(MDA; N = 30)收集的两个回顾性神经胶质瘤数据集,该数据集的术前MRI扫描从患有病理性Gliomas的患者进行了术前MRI扫描。扫描型分类器的精度超过99%,从WUSM和MDA数据集中正确识别了380/384和30/30会话的序列。使用预测和专家肿瘤面膜之间的骰子相似性系数来定量分割性能。平均骰子分别为0.882($ \ pm $ 0.244)和0.977($ \ pm $ 0.04),分别用于WUSM和MDA的整个肿瘤细分。这个简化的框架会自动策划,处理和分段的原始MRI数据,以不同级别的神经胶质瘤患者的患者,使大规模神经肿瘤学数据集的策划能够策划,并证明了作为临床实践中辅助工具的高潜力。

Efforts to utilize growing volumes of clinical imaging data to generate tumor evaluations continue to require significant manual data wrangling owing to the data heterogeneity. Here, we propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-oncology MRI data to extract quantitative tumor measurements. Our end-to-end framework i) classifies MRI sequences using an ensemble classifier, ii) preprocesses the data in a reproducible manner, iii) delineates tumor tissue subtypes using convolutional neural networks, and iv) extracts diverse radiomic features. Moreover, it is robust to missing sequences and adopts an expert-in-the-loop approach, where the segmentation results may be manually refined by radiologists. Following the implementation of the framework in Docker containers, it was applied to two retrospective glioma datasets collected from the Washington University School of Medicine (WUSM; n = 384) and the M.D. Anderson Cancer Center (MDA; n = 30) comprising preoperative MRI scans from patients with pathologically confirmed gliomas. The scan-type classifier yielded an accuracy of over 99%, correctly identifying sequences from 380/384 and 30/30 sessions from the WUSM and MDA datasets, respectively. Segmentation performance was quantified using the Dice Similarity Coefficient between the predicted and expert-refined tumor masks. Mean Dice scores were 0.882 ($\pm$0.244) and 0.977 ($\pm$0.04) for whole tumor segmentation for WUSM and MDA, respectively. This streamlined framework automatically curated, processed, and segmented raw MRI data of patients with varying grades of gliomas, enabling the curation of large-scale neuro-oncology datasets and demonstrating a high potential for integration as an assistive tool in clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源