论文标题

半线性方程的基态解决方案的多样性结果,非线性的幅度突然变化

Multiplicity results for ground state solutions of a semilinear equation via abrupt changes in magnitude of the nonlinearity

论文作者

Cortázar, Carmen, García-Huidobro, Marta, Herreros, Pilar

论文摘要

给定$ k \ in \ mathbb n $,我们定义了一类连续的分段函数$ f $具有突然但受控的幅度变化,以使问题$ $ΔuΔU +f(u)= 0,\ quad x \ in \ mathbb r^n,n> 2,n> 2,$ k $ g $ radyally对称的基础解决方案。

Given $k\in\mathbb N$, we define a class of continuous piecewise functions $f$ having abrupt but controlled magnitude changes so that the problem $$Δu +f(u)=0,\quad x\in \mathbb R^N, N> 2, $$ has at least $k$ radially symmetric ground state solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源