论文标题
首选互变异状态预测的量子模拟
Quantum Simulation of Preferred Tautomeric State Prediction
论文作者
论文摘要
互变异者的预测在计算机辅助药物发现中起着至关重要的作用。但是,如今,准确预测给定药物样分子的规范互变异层形式仍然是一项具有挑战性的任务。缺乏广泛的互变异者数据库,这很可能是由于实验研究的困难,这阻碍了有效的互变异者预测的经验方法的发展。可以通过量子化学计算来实现对稳定互变异组形式的更准确估计。然而,所需的计算成本阻止量子化学计算是计算机辅助药物发现中互变异者预测的标准工具。在本文中,我们提出了杂种量子化学量子量计算工作流程,以有效预测主折线形式。具体而言,我们基于量子化学方法选择活性空间分子轨道。然后,我们利用有效的编码方法将哈密顿量映射到量子设备上,以减少量子资源和电路深度。最后,在使用硬件有效的ANSATZ电路的情况下,采用了变异量子量化算法(VQE)算法。为了证明我们的方法的适用性,我们对两个互变异系统系统进行实验:丙酮和Edaravone,分别在STO-3G基集中分别具有52和150个自旋轨道。我们的数值结果表明,他们的互变异状态预测与CCSD基准相符。此外,所需的量子资源是有效的:在Edaravone的示例中,我们只能使用八个量子位和80个两倍的大门实现化学精度。
Prediction of tautomers plays an essential role in computer-aided drug discovery. However, it remains a challenging task nowadays to accurately predict the canonical tautomeric form of a given drug-like molecule. Lack of extensive tautomer databases, most likely due to the difficulty in experimental studies, hampers the development of effective empirical methods for tautomer predictions. A more accurate estimation of the stable tautomeric form can be achieved by quantum chemistry calculations. Yet, the computational cost required prevents quantum chemistry calculation as a standard tool for tautomer prediction in computer-aided drug discovery. In this paper we propose a hybrid quantum chemistry-quantum computation workflow to efficiently predict the dominant tautomeric form. Specifically, we select active-space molecular orbitals based on quantum chemistry methods. Then we utilize efficient encoding methods to map the Hamiltonian onto quantum devices to reduce the qubit resources and circuit depth. Finally, variational quantum eigensolver (VQE) algorithms are employed for ground state estimation where hardware-efficient ansatz circuits are used. To demonstrate the applicability of our methodology, we perform experiments on two tautomeric systems: acetone and Edaravone, each having 52 and 150 spin-orbitals in the STO-3G basis set, respectively. Our numerical results show that their tautomeric state prediction agrees with the CCSD benchmarks. Moreover, the required quantum resources are efficient: in the example of Edaravone, we could achieve chemical accuracy with only eight qubits and 80 two-qubit gates.