论文标题

$ {\ mathbb z} _3 $ fock parafermions的多体定位

Many-body localization of ${\mathbb Z}_3$ Fock parafermions

论文作者

Bahovadinov, Murod S., Buijsman, Wouter, Fedorov, Aleksey K., Gritsev, Vladimir, Kurlov, Denis V.

论文摘要

我们研究了随机磁场对{\ it相关}近邻居$ xy $相互作用的一维(1D)自旋1链的影响。我们表明,该自旋模型可以精确地映射到$ {\ Mathbb Z} _3 $ Fock Parafermions(FPFS)的1D无序的紧密结合模型,异国情调的任何人型准粒子,这些准粒子概括了通常的无旋转效应。因此,我们有一个异常的哈密顿量的特殊情况,尽管在创建和歼灭操作员中是双线性的,但由于FPF的非平地统计数据,它表现出多体性定位(MBL)过渡。这与传统的骨髓和费米子二次混乱的哈密顿量(Anderson)定位形成鲜明对比。我们对水平间距统计,分形维度和纠缠熵进行有限大小的对角度计算,并为有限疾病强度时的MBL过渡提供了令人信服的证据。

We study the effects of a random magnetic field on a one-dimensional (1D) spin-1 chain with {\it correlated} nearest-neighbor $XY$ interaction. We show that this spin model can be exactly mapped onto the 1D disordered tight-binding model of ${\mathbb Z}_3$ Fock parafermions (FPFs), exotic anyonic quasiparticles that generalize usual spinless fermions. Thus, we have a peculiar case of a disordered Hamiltonian that, despite being bilinear in the creation and annihilation operators, exhibits a many-body localization (MBL) transition owing to the nontrivial statistics of FPFs. This is in sharp contrast to conventional bosonic and fermionic quadratic disordered Hamiltonians that show single-particle (Anderson) localization. We perform finite-size exact diagonalization calculations of level-spacing statistics, fractal dimensions, and entanglement entropy, and provide convincing evidence for the MBL transition at finite disorder strength.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源