论文标题

恒星振荡中的拓扑模式

Topological modes in stellar oscillations

论文作者

Leclerc, Armand, Laibe, Guillaume, Delplace, Pierre, Venaille, Antoine, Perez, Nicolas

论文摘要

恒星振荡可以是拓扑来源。我们通过在恒星和拓扑绝缘子之间建立新的相似之处来揭示恒星的深层隐藏特性。我们构建了一个遗传学问题,以得出恒星$ \ mathrm {\ textit {ocoustic-buoyant}} $频率$ s $ s $的表达。然后,拓扑分析将声学频率的符号的变化与恒星内的羔羊样波的存在联系起来。这些拓扑模式越过频率差距,并在低谐波度$ \ ell $的重力模式下表现为高$ \ ell $的压力模式。发现$ s $至少在大多数恒星物体中至少改变一次标志,从而使整个Hertzsprung-Russel图中无处不在的拓扑模式。预计某些拓扑模式也将被困在内部结构在局部差异很大的地区。

Stellar oscillations can be of topological origin. We reveal this deep and so-far hidden property of stars by establishing a novel parallel between stars and topological insulators. We construct an hermitian problem to derive the expression of the stellar $\mathrm{\textit{acoustic-buoyant}}$ frequency $S$ of non-radial adiabatic pulsations. A topological analysis then connects the changes of sign of the acoustic-buoyant frequency to the existence of Lamb-like waves within the star. These topological modes cross the frequency gap and behave as gravity modes at low harmonic degree $\ell$ and as pressure modes at high $\ell$. $S$ is found to change sign at least once in the bulk of most stellar objects, making topological modes ubiquitous across the Hertzsprung-Russel diagram. Some topological modes are also expected to be trapped in regions where the internal structure varies strongly locally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源