论文标题

SPICER:自动线圈灵敏度估计和重建的MRI的自我监督学习

SPICER: Self-Supervised Learning for MRI with Automatic Coil Sensitivity Estimation and Reconstruction

论文作者

Hu, Yuyang, Gan, Weijie, Ying, Chunwei, Wang, Tongyao, Eldeniz, Cihat, Liu, Jiaming, Chen, Yasheng, An, Hongyu, Kamilov, Ulugbek S.

论文摘要

集成物理测量模型和学习的图像正规化器的深层架构(DMBA)被广泛用于并行磁共振成像(PMRI)。 PMRI的传统DMBA依赖于预估计的线圈灵敏度图(CSM)作为测量模型的组成部分。但是,当测量值高度不足时,准确CSM的估计是一个具有挑战性的问题。此外,对DMBA的传统培训需要高质量的地面图像,从而限制了它们在难以获得地面图的应用中的使用。本文通过将香料作为一种新方法来解决这些问题,该方法将自我监督的学习和自动线圈灵敏度估算估算。香料没有使用预估计的CSM,而是同时重建准确的MR图像并估算高质量的CSM。香料还可以从没有任何地面图的情况下从不足的嘈杂测量中学习。我们在实验收集的数据上验证了香料,表明它可以在高度加速的数据采集设置(最高10倍)中实现最先进的性能。

Deep model-based architectures (DMBAs) integrating physical measurement models and learned image regularizers are widely used in parallel magnetic resonance imaging (PMRI). Traditional DMBAs for PMRI rely on pre-estimated coil sensitivity maps (CSMs) as a component of the measurement model. However, estimation of accurate CSMs is a challenging problem when measurements are highly undersampled. Additionally, traditional training of DMBAs requires high-quality groundtruth images, limiting their use in applications where groundtruth is difficult to obtain. This paper addresses these issues by presenting SPICE as a new method that integrates self-supervised learning and automatic coil sensitivity estimation. Instead of using pre-estimated CSMs, SPICE simultaneously reconstructs accurate MR images and estimates high-quality CSMs. SPICE also enables learning from undersampled noisy measurements without any groundtruth. We validate SPICE on experimentally collected data, showing that it can achieve state-of-the-art performance in highly accelerated data acquisition settings (up to 10x).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源