论文标题
拉撒路之星:恒星进化的数字研究,升空作为生命延长策略
Lazarus Stars: Numerical investigations of stellar evolution with star-lifting as a life extension strategy
论文作者
论文摘要
太阳的衰老和逐渐变亮将挑战接下来的数十亿年地球的居住能力。如果生命存在于宇宙中的其他地方,那么其寄宿明星的衰老也会构成生存威胁。我们配音拉撒路恒星的一种解决方案是使先进的文明以抵消亮度增加的速度从其宿主星中清除(或星号)质量,从而使可居住的行星上的通量保持不变,并延长其恒星的寿命。尽管自1985年首次提出了克里斯威尔(Criswell)提出的想法,但缺乏对星际风格的数字研究。在这里,我们使用恒星进化代码MESA查找质量与年龄,$ \ dot {m} $ vs.年龄关系,这将使周围行星上的通量保持不变。我们探索初始质量,范围从$ 0.2 {\ rm m} _ {\ odot} $到$ 1.2 {\ rm m} _ {\ odot} $。对于大多数质量最初低于$ 0.4 {\ rm m} _ {\ odot} $的恒星,我们发现不再可能将星际风格的寿命提高到最高$ 500 $ gyr,直到他们接近氢燃烧极限和不再可能。对于更大的恒星,尽管它们仍然进入红色巨型阶段,但星际式的恒星将主要序列寿命增加1 Gyr至100 GYR。例如,像太阳一样的恒星具有主要的寿命,可以增加3 Gyr。这需要每年$ 0.05 {\ rm m} _ {\ mathrm {ceres}} $的质量损失率约为0.05美元。我们将恒星与其他生存策略进行比较,并简要讨论用于检测这些工程恒星的方法。
The aging and gradual brightening of the Sun will challenge Earth's habitability in the next few billion years. If life exists elsewhere in the Universe, the aging of its host star similarly poses an existential threat. One solution, which we dub a Lazarus star, is for an advanced civilization to remove (or star-lift) mass from their host star at a rate that offsets the increase in luminosity, keeping the flux on the habitable planet(s) constant and extending the lifetime of their star. While this idea has existed since 1985 when it was first proposed by Criswell, numerical investigations of star-lifting have been lacking. Here, we use the stellar evolution code MESA to find mass vs. age and $\dot{M}$ vs. age relations which would hold the flux on surrounding planets constant. We explore initial mass ranging from $0.2{\rm M}_{\odot}$ to $1.2{\rm M}_{\odot}$. For most stars with a mass initially below about $ 0.4 {\rm M}_{\odot}$, we find that star-lifting increases their main-sequence lifetimes up to $500$ Gyr until they approach the hydrogen burning limit and star-lifting is no longer possible. For more massive stars, star-lifting increase main-sequence lifetimes by 1 Gyr to 100 Gyr, though they still enter the red-giant phase. For example, a Sun-like star has a main-sequence lifetime which can be increased by up to 3 Gyr. This requires a mass-loss rate of about $0.05 {\rm M}_{\mathrm{Ceres}}$ per year. We compare star-lifting to other survival strategies and briefly discuss methods for detecting these engineered stars.