论文标题

运营商满足某些形式的主教 - 玻璃体类型属性和数值半径

Operators satisfying some forms of Bishop-Phelps-Bollobas type properties for norm and numerical radius

论文作者

Chakraborty, Uday Shankar

论文摘要

在本文中,我们研究了属性的较弱形式$ \ text {\ textbf {l}} _ {o,o} $称为弱$ \ text {\ textbf {l textbf {l}} _ {o,o,o} $及其统一版本及其统一版本,称为弱$ \ text {bpb} proplo $ \ text {bpb} _ {\ text {op}} $用于一对巴拉克空间。我们证明,当且仅当$(x,x,\ mathbb {r})$中,banach space $ x $具有反射性且均匀均匀的凸,才有属性弱$ \ text {bpb} _ {\ text {op text {op}} $。我们进一步研究了所有有界线性运算符的类,从BANACH空间到另一个满足属性的Banach空间,这些属性弱$ \ text {\ textbf {l}} _ {o,o,o} $。最后,我们介绍并研究了有界线性图的数值半径的相似特性。

In this paper we study a weaker form of the property $\text{\textbf{L}}_{o,o}$ called the weak $\text{\textbf{L}}_{o,o}$ and its uniform version called the weak $\text{BPB}_{\text{op}}$ which is again a weaker form the property $\text{BPB}_{\text{op}}$ for a pair of Banach spaces. We prove that a Banach space $X$ is reflexive and weakly uniformly convex if and only if the pair $(X,\mathbb{R})$ has the property weak $\text{BPB}_{\text{op}}$. We further investigate the class of all bounded linear operators from a Banach space to another Banach space satisfying the property weak $\text{\textbf{L}}_{o,o}$. Finally we introduce and study similar properties for numerical radius of a bounded linear map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源