论文标题

组合:使用压缩指纹的图像伪造检测和定位

Comprint: Image Forgery Detection and Localization using Compression Fingerprints

论文作者

Mareen, Hannes, Bussche, Dante Vanden, Guillaro, Fabrizio, Cozzolino, Davide, Van Wallendael, Glenn, Lambert, Peter, Verdoliva, Luisa

论文摘要

现实地编辑图像的操作工具已广泛使用,使任何人都可以轻松创建和传播错误信息。为了打击虚假新闻,设计了伪造发现和本地化方法。但是,现有的方法难以准确揭示Internet上图像中发现的操纵,即野外。这是因为伪造的类型通常是未知的,除了被重新压缩损坏的篡改痕迹。本文介绍了Comprint,这是一种基于压缩指纹或构成的新型伪造检测和定位方法。它仅对原始数据进行培训,提供概括以检测不同类型的操作。此外,我们提出了与最先进的Noiseprint相结合的融合,该杂音利用了互补的相机模型指纹。我们进行了广泛的实验分析,并证明Comprint在五个评估数据集上具有很高的准确性,这些数据集代表了多种操纵类型,模仿了野外的情况。最值得注意的是,所提出的融合显着优于最先进的参考方法。因此,构成和融合构成+Noiseprint代表了一种有前途的取证工具,用于分析野外篡改的图像。

Manipulation tools that realistically edit images are widely available, making it easy for anyone to create and spread misinformation. In an attempt to fight fake news, forgery detection and localization methods were designed. However, existing methods struggle to accurately reveal manipulations found in images on the internet, i.e., in the wild. That is because the type of forgery is typically unknown, in addition to the tampering traces being damaged by recompression. This paper presents Comprint, a novel forgery detection and localization method based on the compression fingerprint or comprint. It is trained on pristine data only, providing generalization to detect different types of manipulation. Additionally, we propose a fusion of Comprint with the state-of-the-art Noiseprint, which utilizes a complementary camera model fingerprint. We carry out an extensive experimental analysis and demonstrate that Comprint has a high level of accuracy on five evaluation datasets that represent a wide range of manipulation types, mimicking in-the-wild circumstances. Most notably, the proposed fusion significantly outperforms state-of-the-art reference methods. As such, Comprint and the fusion Comprint+Noiseprint represent a promising forensics tool to analyze in-the-wild tampered images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源