论文标题

用截止日期优化两卡的排

Optimizing Two-Truck Platooning with Deadlines

论文作者

Xu, Wenjie, Cui, Titing, Chen, Minghua

论文摘要

我们研究了一个运输问题,其中两辆重型卡车从单独的起源到目的地穿越国家高速公路,但要受到个人截止日期约束。我们的目标是通过共同优化路径计划,速度计划和排成配置来最大程度地减少其总油耗。这样的两卡货中的问题在实践中普遍存在,但由于艰难的截止日期限制和要考虑的巨大的排型配置,要解决的挑战。我们首先利用独特的问题结构来显着简化排量优化并提出新颖的配方。我们证明,两卡的排队问题是弱的NP - hard,并接受了完全多项式时间近似方案(FPTA)。 FPTA可以在$(1+ε)$(对于任何$ε> 0 $中)的比率(1+ε)$的比例以耗油的比例达到运输网络大小的时间复杂性多项式和$ 1/ε$的比率。这些结果与一般的多卡通排问题形成了鲜明的对比,该问题已知是APX-HARD并排斥任何FPTA。由于FPTA仍会在大规模案例中产生过度的运行时间,因此我们设计了一种有效的双提取算法来解决大/国家规模实例。这是一种始终收敛的迭代算法。我们证明,每次迭代仅会产生多项式时间复杂性,尽管它需要最佳地解决整数线性编程问题。我们表征了算法生成最佳解决方案并在未达到条件时绑定的后验性能的条件。基于现实世界痕迹的大量模拟表明,与基线替代方案相比,我们的路径计划,速度计划和排的联合解决方案可节省高达$ 24 \%$的燃料。

We study a transportation problem where two heavy-duty trucks travel across the national highway from separate origins to destinations, subject to individual deadline constraints. Our objective is to minimize their total fuel consumption by jointly optimizing path planning, speed planning, and platooning configuration. Such a two-truck platooning problem is pervasive in practice yet challenging to solve due to hard deadline constraints and enormous platooning configurations to consider. We first leverage a unique problem structure to significantly simplify platooning optimization and present a novel formulation. We prove that the two-truck platooning problem is weakly NP-hard and admits a Fully Polynomial Time Approximation Scheme (FPTAS). The FPTAS can achieve a fuel consumption within a ratio of $(1+ε)$ to the optimal (for any $ε>0$) with a time complexity polynomial in the size of the transportation network and $1/ε$. These results are in sharp contrast to the general multi-truck platooning problem, which is known to be APX-hard and repels any FPTAS. As the FPTAS still incurs excessive running time for large-scale cases, we design an efficient dual-subgradient algorithm for solving large-/national- scale instances. It is an iterative algorithm that always converges. We prove that each iteration only incurs polynomial-time complexity, albeit it requires solving an integer linear programming problem optimally. We characterize a condition under which the algorithm generates an optimal solution and derive a posterior performance bound when the condition is not met. Extensive simulations based on real-world traces show that our joint solution of path planning, speed planning, and platooning saves up to $24\%$ fuel as compared to baseline alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源