论文标题
深度学习框架中非功能错误的多方面分层报告标识
Multifaceted Hierarchical Report Identification for Non-Functional Bugs in Deep Learning Frameworks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Non-functional bugs (e.g., performance- or accuracy-related bugs) in Deep Learning (DL) frameworks can lead to some of the most devastating consequences. Reporting those bugs on a repository such as GitHub is a standard route to fix them. Yet, given the growing number of new GitHub reports for DL frameworks, it is intrinsically difficult for developers to distinguish those that reveal non-functional bugs among the others, and assign them to the right contributor for investigation in a timely manner. In this paper, we propose MHNurf - an end-to-end tool for automatically identifying non-functional bug related reports in DL frameworks. The core of MHNurf is a Multifaceted Hierarchical Attention Network (MHAN) that tackles three unaddressed challenges: (1) learning the semantic knowledge, but doing so by (2) considering the hierarchy (e.g., words/tokens in sentences/statements) and focusing on the important parts (i.e., words, tokens, sentences, and statements) of a GitHub report, while (3) independently extracting information from different types of features, i.e., content, comment, code, command, and label. To evaluate MHNurf, we leverage 3,721 GitHub reports from five DL frameworks for conducting experiments. The results show that MHNurf works the best with a combination of content, comment, and code, which considerably outperforms the classic HAN where only the content is used. MHNurf also produces significantly more accurate results than nine other state-of-the-art classifiers with strong statistical significance, i.e., up to 71% AUC improvement and has the best Scott-Knott rank on four frameworks while 2nd on the remaining one. To facilitate reproduction and promote future research, we have made our dataset, code, and detailed supplementary results publicly available at: https://github.com/ideas-labo/APSEC2022-MHNurf.