论文标题
关于获得映射的数值半径的注释
A note on numerical radius attaining mappings
论文作者
论文摘要
我们证明,如果每个有界的线性运算符(或$ n $ hosyous的多项式)具有紧凑的近似属性,则达到其数值半径,则$ x $是一个有限的维度空间。此外,我们提出了2003年Acosta,Becerra Guerrero和Gal $Á$ N证明的多项式詹姆斯的数字半径定理的改进。最后,弱(均匀)连续$ 2 $ homemoy-homemogene的密度,其Aron-Berberner oftimials umerions ant tum radi radi radi radi radi radi radi。
We prove that if every bounded linear operator (or $N$-homogeneous polynomials) with the compact approximation property attains its numerical radius, then $X$ is a finite dimensional space. Moreover, we present an improvement of the polynomial James' theorem for numerical radius proved by Acosta, Becerra Guerrero and Gal$á$n in 2003. Finally, the denseness of weakly (uniformly) continuous $2$-homogeneous polynomials on a Banach space whose Aron-Berner extensions attain their numerical radii is obtained.