论文标题

Prodmps:动态和概率运动原始的统一观点

ProDMPs: A Unified Perspective on Dynamic and Probabilistic Movement Primitives

论文作者

Li, Ge, Jin, Zeqi, Volpp, Michael, Otto, Fabian, Lioutikov, Rudolf, Neumann, Gerhard

论文摘要

运动原语(MPS)是一个众所周知的概念,可以代表和生成模块化轨迹。国会议员可以将大致分为两种类型:(a)基于动态的方法,这些方法从任何初始状态e产生平滑轨迹,e。 g。,动态运动原语(DMP)和(b)捕获运动高阶统计的概率方法,e。 g。,概率运动原语(启动)。但是,迄今为止,还没有统一两者的方法,即。 e。在捕获高阶统计时,可以从任意初始状态产生平滑的轨迹。在本文中,我们通过解决DMP的颂歌来介绍两种方法的统一观点。我们将DMP的昂贵在线数值集成转换为可以离线计算的基础函数。这些基础函数可用于表示类似于启动的轨迹或轨迹分布,同时维护动态系统的所有属性。由于我们继承了这两种方法的属性,因此我们称我们提出的模型概率动态运动原语(PODMP)。此外,我们将Prodmps嵌入了深度神经网络体系结构中,并提出了一种新的成本函数,以有效地端到端学习高阶轨迹统计。为此,我们利用贝叶斯聚集在感觉输入上为非线性迭代条件。我们提出的模型可以在一个框架中实现平滑的轨迹产生,目标吸引者收敛,相关分析,非线性调节和在线重新计划。

Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into basis functions that can be computed offline. These basis functions can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源