论文标题

部分可观测时空混沌系统的无模型预测

Event-Triggered Safe Stabilizing Boundary Control for the Stefan PDE System with Actuator Dynamics

论文作者

Koga, Shumon, Demir, Cenk, Krstic, Miroslav

论文摘要

本文提出了一个通过执行动力学的Stefan PDE系统安全稳定的事件触发的边界控制。控制定律是通过将零级保持(ZOH)应用于我们先前工作中开发的连续时间安全稳定控制器而设计的。然后得出事件触发机制,以便保持与高阶控制屏障功能(CBF)相关的安全条件,并确保闭环系统的稳定性。我们证明,在提出的事件触发机制下,总是避免了所谓的``zeno''行为,通过显示两个触发时间之间的最小居住时间的存在。闭环系统的稳定性通过使用PDE BackStepting方法和Lyapunov分析来证明,该方法的效率是拟议方法的效率。

This paper proposes an event-triggered boundary control for the safe stabilization of the Stefan PDE system with actuator dynamics. The control law is designed by applying Zero-Order Hold (ZOH) to the continuous-time safe stabilizing controller developed in our previous work. The event-triggering mechanism is then derived so that the imposed safety conditions associated with high order Control Barrier Function (CBF) are maintained and the stability of the closed-loop system is ensured. We prove that under the proposed event-triggering mechanism, the so-called ``Zeno" behavior is always avoided, by showing the existence of the minimum dwell-time between two triggering times. The stability of the closed-loop system is proven by employing PDE backstepping method and Lyapunov analysis. The efficacy of the proposed method is demonstrated in numerical simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源