论文标题
部分可观测时空混沌系统的无模型预测
Formation and evaporation of quantum black holes from the decoupling mechanism in quantum gravity
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose a new method to account for quantum-gravitational effects in cosmological and black hole spacetimes. At the core of our construction is the "decoupling mechanism": when a physical infrared scale overcomes the effect of the regulator implementing the Wilsonian integration of fluctuating modes, the renormalization group flow of the scale-dependent effective action freezes out, so that at the decoupling scale the latter approximates the standard quantum effective action. Identifying the decoupling scale allows to access terms in the effective action that were not part of the original truncation and thus to study leading-order quantum corrections to field equations and their solutions. Starting from the Einstein-Hilbert truncation, we exploit for the first time the decoupling mechanism in quantum gravity to investigate the dynamics of quantum-corrected black holes from formation to evaporation. Our findings are in qualitative agreement with previous results in the context of renormalization group improved black holes, but additionally feature novel properties reminiscent of higher-derivative operators with specific non-local form factors.