论文标题

基于数据增强的随机增强:医学数据集的广义增强方法

Random Data Augmentation based Enhancement: A Generalized Enhancement Approach for Medical Datasets

论文作者

Aleem, Sidra, Kumar, Teerath, Little, Suzanne, Bendechache, Malika, Brennan, Rob, McGuinness, Kevin

论文摘要

多年来,医学图像分析的范式已经从手动专业知识转变为自动化系统,通常使用深度学习(DL)系统。深度学习算法的性能高度取决于数据质量。特别是对于医疗领域,这是一个重要方面,因为医疗数据对质量和质量差非常敏感会导致误诊。为了提高诊断性能,在复杂的DL架构和使用依赖数据集依赖性静态超参数提高数据质量方面进行了研究。但是,由于数据质量和超参数过度拟合到特定数据集,该性能仍然受到限制。为了克服这些问题,本文提出了基于数据增强的随机增强。主要目的是开发一种广义,独立和计算有效的增强方法,以改善DL的医疗数据质量。通过改善图像的亮度和对比度来提高质量。与现有方法相反,我们的方法在定义的范围内随机生成增强超参数,这使其可靠并防止过度适合特定数据集。为了评估所提出方法的概括,我们使用四个医疗数据集并将其性能与最新方法进行分类和分割任务进行比较。对于灰度图像,已经使用:COVID-19胸部X射线,套件,套件19,以及使用:LC25000数据集的RGB图像。实验结果表明,通过提出的增强方法,DL体系结构的表现优于其他现有方法。我们的代码可在以下公开信息:https://github.com/aleemsidra/augmentation基于generalized-enhhancement

Over the years, the paradigm of medical image analysis has shifted from manual expertise to automated systems, often using deep learning (DL) systems. The performance of deep learning algorithms is highly dependent on data quality. Particularly for the medical domain, it is an important aspect as medical data is very sensitive to quality and poor quality can lead to misdiagnosis. To improve the diagnostic performance, research has been done both in complex DL architectures and in improving data quality using dataset dependent static hyperparameters. However, the performance is still constrained due to data quality and overfitting of hyperparameters to a specific dataset. To overcome these issues, this paper proposes random data augmentation based enhancement. The main objective is to develop a generalized, data-independent and computationally efficient enhancement approach to improve medical data quality for DL. The quality is enhanced by improving the brightness and contrast of images. In contrast to the existing methods, our method generates enhancement hyperparameters randomly within a defined range, which makes it robust and prevents overfitting to a specific dataset. To evaluate the generalization of the proposed method, we use four medical datasets and compare its performance with state-of-the-art methods for both classification and segmentation tasks. For grayscale imagery, experiments have been performed with: COVID-19 chest X-ray, KiTS19, and for RGB imagery with: LC25000 datasets. Experimental results demonstrate that with the proposed enhancement methodology, DL architectures outperform other existing methods. Our code is publicly available at: https://github.com/aleemsidra/Augmentation-Based-Generalized-Enhancement

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源