论文标题

WITT类型代数的转泊泊松结构

Transposed Poisson structures on Witt type algebras

论文作者

Kaygorodov, Ivan, Khrypchenko, Mykola

论文摘要

我们描述了$ \ frac {1} {2} $ - 衍生物,因此在witt type lie代数$ v(f)$上进行了转移的泊松代数结构,其中$ f:γ\ to \ mathbb c $是非琐事和$ f(0)= 0 $。更确切地说,如果$ | f(γ)| \ ge 4 $,则$ v(f)$上的所有转移泊松代数结构是组代数结构$(v(f),\ cdot)$ on $ v(f)$的突变。如果$ | f(γ)| = 3 $,则我们获得$ 3 $子空间的直接总和为$ v(f)$,对应于$γ$中的$γ_0$的cosets,乘以$ \ cdot $的乘法不同。情况$ | f(γ)| = 2 $更为复杂,但也涉及$ \ cdot $的某些突变。结果,发现非平凡$ {\ rm hom} $的新的谎言代数 - lie代数结构。

We describe $\frac{1}{2}$-derivations, and hence transposed Poisson algebra structures, on Witt type Lie algebras $V(f)$, where $f:Γ\to\mathbb C$ is non-trivial and $f(0)=0$. More precisely, if $|f(Γ)|\ge 4$, then all the transposed Poisson algebra structures on $V(f)$ are mutations of the group algebra structure $(V(f),\cdot)$ on $V(f)$. If $|f(Γ)|=3$, then we obtain the direct sum of $3$ subspaces of $V(f)$, corresponding to cosets of $Γ_0$ in $Γ$, with multiplications being different mutations of $\cdot$. The case $|f(Γ)|=2$ is more complicated, but also deals with certain mutations of $\cdot$. As a consequence, new Lie algebras that admit non-trivial ${\rm Hom}$-Lie algebra structures are found.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源