论文标题

部分可观测时空混沌系统的无模型预测

Borsuk-Ulam property and Sectional Category

论文作者

Zapata, Cesar A. Ipanaque, Gonçalves, Daciberg L.

论文摘要

对于Hausdorff Space $ X $,免费互动$τ:X \ to X $和Hausdorff Space $ Y $,我们发现了双重覆盖$ Q的部分类别$ Q:x/τ$ x/τ$和$ q^y:f(y,2) $ d(y,2)= f(y,2)/σ_2$,以及三重$ \ left((x,x,τ); y \ right)$的borsuk-ulam属性(bup)。明确地,我们证明了三重$ \ left((x,τ); y \ right)$如果$ q $的截面类别大于$ q^y $的截面类别。该属性将Borsuk-Ulam理论中的标准问题与部分类别的当前研究趋势联系起来。作为结果的应用,我们表明$(x,τ)$的索引与商映射的截面类别$ q:x \ x/τ$减1 $ q:x/τ$减1 $ x $。此外,我们还提出了有关Borsuk-Ulam理论和部分类别的一些新结果。

For a Hausdorff space $X$, a free involution $τ:X\to X$ and a Hausdorff space $Y$, we discover a connection between the sectional category of the double covers $q:X\to X/τ$ and $q^Y:F(Y,2)\to D(Y,2)$ from the ordered configuration space $F(Y,2)$ to its unordered quotient $D(Y,2)=F(Y,2)/Σ_2$, and the Borsuk-Ulam property (BUP) for the triple $\left((X,τ);Y\right)$. Explicitly, we demonstrate that the triple $\left((X,τ);Y\right)$ satisfies the BUP if the sectional category of $q$ is bigger than the sectional category of $q^Y$. This property connects a standard problem in Borsuk-Ulam theory to current research trends in sectional category. As an application of our results, we show that the index of $(X,τ)$ coincides with the sectional category of the quotient map $q:X\to X/τ$ minus 1 for any paracompact space $X$. In addition, we present some new results relating Borsuk-Ulam theory and sectional category.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源