论文标题
MLPINIT:具有MLP初始化的令人尴尬的简单GNN培训加速
MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization
论文作者
论文摘要
大图上的训练图神经网络(GNN)很复杂且非常耗时。这归因于稀疏矩阵乘法引起的开销,当训练只有节点特征的多层感知器(MLP)时,它们会避开。 MLP通过忽略图形上下文,对于图形数据而言是简单,更快的,但是它们通常牺牲预测准确性,从而限制了其用于图形数据的应用程序。我们观察到,对于大多数基于消息传递的GNN,我们可以通过设置具有相同形状的可训练参数,使我们对\ textbf {\ emph {\ emph {如何使用完全训练的Peermlp perfers fround fround fround fround fround fround fround fround fround fround fround fround fround pers and},从而使我们对具有相同形状的可训练参数进行设置,从而微不足道地得出一个类似的MLP(我们称其为peermlp)。权重大大优于其peermlps,激励我们将PeerMLP培训用作前体,初始化GNN培训的步骤。为此,我们提出了一种令人尴尬的简单但非常有效的初始化方法,用于GNN培训加速度,称为MLPINIT。我们在多个具有不同GNN体系结构的多个大型图形数据集上进行的广泛实验验证,MLPINIT可以加速培训GNN(在OGB产品上加速33倍),通常会提高预测性能,并提高预测性能(例如,$ 7.97 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 17 $ 17 $ 17 $ 17. $ 17. $ 17. $ 17. + $ 17. + $ 17. + $ 17. $ 4 $数据集用于链接预测@10)。该代码可在\ href {https://github.com/snap-research/mlpinit-for-gnns}中获得。
Training graph neural networks (GNNs) on large graphs is complex and extremely time consuming. This is attributed to overheads caused by sparse matrix multiplication, which are sidestepped when training multi-layer perceptrons (MLPs) with only node features. MLPs, by ignoring graph context, are simple and faster for graph data, however they usually sacrifice prediction accuracy, limiting their applications for graph data. We observe that for most message passing-based GNNs, we can trivially derive an analog MLP (we call this a PeerMLP) with an equivalent weight space, by setting the trainable parameters with the same shapes, making us curious about \textbf{\emph{how do GNNs using weights from a fully trained PeerMLP perform?}} Surprisingly, we find that GNNs initialized with such weights significantly outperform their PeerMLPs, motivating us to use PeerMLP training as a precursor, initialization step to GNN training. To this end, we propose an embarrassingly simple, yet hugely effective initialization method for GNN training acceleration, called MLPInit. Our extensive experiments on multiple large-scale graph datasets with diverse GNN architectures validate that MLPInit can accelerate the training of GNNs (up to 33X speedup on OGB-Products) and often improve prediction performance (e.g., up to $7.97\%$ improvement for GraphSAGE across $7$ datasets for node classification, and up to $17.81\%$ improvement across $4$ datasets for link prediction on metric Hits@10). The code is available at \href{https://github.com/snap-research/MLPInit-for-GNNs}.