论文标题
自动编码器增强了航空声翼型的优化
Aeroacoustic airfoil shape optimization enhanced by autoencoders
论文作者
论文摘要
我们提出了一个用于翼型形状优化的框架,以减少风力涡轮机叶片设计的后边缘噪声。使用Amiet的理论与TNO-Blake模型一起评估远场噪声,以计算壁压光谱和快速转向式Xfoil模拟以评估边界层参数。首先,使用NACA0012机翼以零攻击角对计算框架进行验证。粒子群优化用于查找优化的翼型配置。多目标优化可将A加权的总体声压水平以各种攻击角度最小化,同时确保足够的升力和最小阻力。我们比较经典的参数化方法将机翼几何形状(即CST)定义为机器学习方法(即变异自动编码器)。我们观察到,变异自动编码器可以代表多种几何形状,只有四个编码变量,从而导致有效的优化,从而改善了最佳形状。与基线几何形状(NACA0012)相比,基于自动编码器的优化机翼降低了3%(1.75 dBA)的整体声压水平(整个频率范围内噪声降低),同时在提升和阻力方面保持了良好的空气动力学性能。
We present a framework for airfoil shape optimization to reduce the trailing edge noise for the design of wind turbine blades. Far-field noise is evaluated using Amiet's theory coupled with the TNO-Blake model to calculate the wall pressure spectrum and fast turn-around XFOIL simulations to evaluate the boundary layer parameters. The computational framework is first validated using a NACA0012 airfoil at zero angle of attack. Particle swarm optimization is used to find the optimized airfoil configuration. The multi-objective optimization minimizes the A-weighted overall sound pressure level at various angles of attack, while ensuring enough lift and minimum drag. We compare classic parametrization methods to define the airfoil geometry (i.e., CST) to a machine learning method (i.e., a variational autoencoder). We observe that variational autoencoders can represent a wide variety of geometries, with only four encoded variables, leading to efficient optimizations, which result in improved optimal shapes. When compared to the baseline geometry, a NACA0012, the autoencoder-based optimized airfoil reduces by 3% (1.75 dBA) the overall sound pressure level (with decreased noise across the entire frequency range), while maintaining favorable aerodynamic properties in terms of lift and drag.