论文标题
使用岩石和波物理学知情神经网络(RW-PINN)从地震数据中直接估算孔隙率
Direct Estimation of Porosity from Seismic Data using Rock and Wave Physics Informed Neural Networks (RW-PINN)
论文作者
论文摘要
岩石物理反转是储层建模的重要方面。但是,由于地震痕迹和岩石特性之间缺乏独特而直接的关系,直接从地震数据中预测岩石物理特性是一项复杂的任务。许多研究试图使用监督的机器学习技术来识别直接端到端的链接,但是面临不同的挑战,例如缺乏大型岩石物理训练数据集或可能不符合岩石物理或沉积历史的估计值。我们提出了一个岩石物理学知情的神经网络(RW-PINN)模型,该模型可以直接从没有或有限的井中直接从地震图像痕迹中估算孔隙率,并具有与岩石物理学和沉积地质知识一致的预测。例如,我们使用未元素的砂岩物理模型和正常的含量波物理学来指导RW-PINN的学习,以最终从正常的地震痕迹和有限的良好数据中获得良好的孔隙率。训练RW-Pinn几乎没有井(弱监督)有助于解决非唯一性问题,因为不同的孔隙度日志可以提供相似的地震痕迹。我们使用加权归一化的均方根误差损失函数来训练弱监督的网络,并证明不同权重对孔隙度预测的影响。将RW-PINN估计的孔隙率和地震痕迹与完全监督模型的预测进行了比较,该模型可提供更好的孔隙率估计,但与地震痕迹相匹配,此外还需要大量标记的训练数据。在本文中,我们证明了使用自我监督或弱监督的岩石物理学知情的神经网络来执行地震数据的岩石物理倒置的完整工作流程。
Petrophysical inversion is an important aspect of reservoir modeling. However due to the lack of a unique and straightforward relationship between seismic traces and rock properties, predicting petrophysical properties directly from seismic data is a complex task. Many studies have attempted to identify the direct end-to-end link using supervised machine learning techniques, but face different challenges such as a lack of large petrophysical training dataset or estimates that may not conform with physics or depositional history of the rocks. We present a rock and wave physics informed neural network (RW-PINN) model that can estimate porosity directly from seismic image traces with no or limited number of wells, with predictions that are consistent with rock physics and geologic knowledge of deposition. As an example, we use the uncemented sand rock physics model and normal-incidence wave physics to guide the learning of RW-PINN to eventually get good estimates of porosities from normal-incidence seismic traces and limited well data. Training RW-PINN with few wells (weakly supervised) helps in tackling the problem of non-uniqueness as different porosity logs can give similar seismic traces. We use weighted normalized root mean square error loss function to train the weakly supervised network and demonstrate the impact of different weights on porosity predictions. The RW-PINN estimated porosities and seismic traces are compared to predictions from a completely supervised model, which gives slightly better porosity estimates but poorly matches the seismic traces, in addition to requiring a large amount of labeled training data. In this paper, we demonstrate the complete workflow for executing petrophysical inversion of seismic data using self-supervised or weakly supervised rock physics informed neural networks.