论文标题

Riesz的$ \ ell^p $规范 - 甚至整数$ p $

The $\ell^p$ norm of the Riesz--Titchmarsh transform for even integer $p$

论文作者

Bañuelos, Rodrigo, Kwaśnicki, Mateusz

论文摘要

长期以来的猜想是,$ p \ in(1,\ infty)$ $ \ ell^p(\ mathbb z)$ riesz-- titchmarsh nilbert hilbert转换与$ l^p(\ m athbb r)$相同,$ l^p(\ mathbb r)$ n $ p = 2 n $ = 2 n $ = 2 n $ \ frac} $ n \ in \ mathbb n $。本质上是代数的证明,以一种至关重要的方式取决于$ \ ell^p(\ mathbb z)$ norm for $ p $的全部范围。后者的结果最近由[Bañuelos,Kwaśnicki,在$ \ ell^p $ -Norm的$ \ ell^p $ norm,duke Math。 J. 168(3)(2019):471-504]。

The long-standing conjecture that for $p \in (1, \infty)$ the $\ell^p(\mathbb Z)$ norm of the Riesz--Titchmarsh discrete Hilbert transform is the same as the $L^p(\mathbb R)$ norm of the classical Hilbert transform, is verified when $p = 2 n$ or $\frac{p}{p - 1} = 2 n$, for $n \in \mathbb N$. The proof, which is algebraic in nature, depends in a crucial way on the sharp estimate for the $\ell^p(\mathbb Z)$ norm of a different variant of this operator for the full range of $p$. The latter result was recently proved by the authors in [Bañuelos, Kwaśnicki, On the $\ell^p$-norm of the discrete Hilbert transform, Duke Math. J. 168(3) (2019): 471-504].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源