论文标题

从量化数据中估计信号参数估计的CRAMER-RAO

The Cramer-Rao Bound for Signal Parameter Estimation from Quantized Data

论文作者

Stoica, Petre, Shang, Xiaolei, Cheng, Yuanbo

论文摘要

当前的几种超宽的频段应用,例如毫米波雷达和通信系统,需要高采样率,因此需要昂贵的饮用能量的类似物数字转换器(ADC)。在存在成本和功率限制的应用中,使用高精度ADC是不可行的,设计人员必须诉诸具有粗量化的ADC。因此,近年来,对来自量化数据的信号参数估计的问题的兴趣显着增加。 CRAMER-RAO BOND(CRB)是任何参数估计问题中的重要标准。实际上,它降低了任何无偏参数估计器的方差。此外,CRB是可实现的极限,例如,它是由最大似然估计器(在规则性条件下)渐近实现的,因此它可以比较任何参数估计器的准确性,应该被比较。来自实价量化数据的信号参数估计的CRB公式已在其中提出,但其推导有些粗略。例如,所述CRB公式已被扩展到复杂值量化的数据,但其推导再次是粗略的。已经对二元(1位)ADC的特殊情况和由一个正弦曲线组成的信号进行了彻底分析。已经得出了二元ADC和一般实现信号的CRB公式。

Several current ultra-wide band applications, such as millimeter wave radar and communication systems, require high sampling rates and therefore expensive and energy-hungry analogto-digital converters (ADCs). In applications where cost and power constraints exist, the use of high-precision ADCs is not feasible and the designer must resort to ADCs with coarse quantization. Consequently the interest in the topic of signal parameter estimation from quantized data has increased significantly in recent years. The Cramer-Rao bound (CRB) is an important yardstick in any parameter estimation problem. Indeed it lower bounds the variance of any unbiased parameter estimator. Moreover, the CRB is an achievable limit, for instance it is asymptotically attained by the maximum likelihood estimator (under regularity conditions), and thus it is a useful benchmark to which the accuracy of any parameter estimator can and should be compared. A formula for the CRB for signal parameter estimation from real-valued quantized data has been presented in but its derivation was somewhat sketchy. The said CRB formula has been extended for instance in to complex-valued quantized data, but again its derivation was rather sketchy. The special case of binary (1-bit) ADCs and a signal consisting of one sinusoid has been thoroughly analyzed in . The CRB formula for a binary ADC and a general real-valued signal has been derived.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源