论文标题

液体排名声誉系统的应用内容建议

Application of Liquid Rank Reputation System for Content Recommendation

论文作者

Saxena, Abhishek, Kolonin, Anton

论文摘要

在社交媒体平台上的有效内容建议应该能够使创作者受益,以赢得公平的薪酬和消费者,以享受真正相关,有趣和个性化的内容。在本文中,我们提出了一个模型,以实施内容推荐系统的流动民主原则。它使用基于声誉排名系统的个性化建议模型来鼓励个人兴趣驱动推荐。此外,在社交网络(我们案例研究中的初始输入Twitter渠道)上,最终用户的高阶朋友的个性化因素,以提高建议结果的准确性和多样性。本文根据Twitter上的加密货币新闻分析了数据集,以使用液体排名声誉系统找到意见领导者。本文介绍了内容建议模型中液体等级的层次-2实施。该模型也可以用作其他推荐系统中的附加层。本文提出了液体等级信誉模型的实施,挑战和未来范围。

An effective content recommendation on social media platforms should be able to benefit both creators to earn fair compensation and consumers to enjoy really relevant, interesting, and personalized content. In this paper, we propose a model to implement the liquid democracy principle for the content recommendation system. It uses a personalized recommendation model based on reputation ranking system to encourage personal interests driven recommendation. Moreover, the personalization factors to an end users' higher-order friends on the social network (initial input Twitter channels in our case study) to improve the accuracy and diversity of recommendation results. This paper analyzes the dataset based on cryptocurrency news on Twitter to find the opinion leader using the liquid rank reputation system. This paper deals with the tier-2 implementation of a liquid rank in a content recommendation model. This model can be also used as an additional layer in the other recommendation systems. The paper proposes the implementation, challenges, and future scope of the liquid rank reputation model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源