论文标题

Köthe-Herz空间:无限直接总和的汞合金型空间

Köthe-Herz Spaces: The Amalgam-Type Spaces of Infinite Direct Sums

论文作者

Bhat, M. Ashraf, Kolwicz, P., Kosuru, G. Sankara Raju

论文摘要

在本文中,我们介绍了一个称为köthe-herz空间$ e(\ mathcal {x})$的功能空间。这些空间与amalgam空间相似,其特征是由可数家族$ \ Mathcal {x} = \ left(x_ {α} \ right)_ {α\ in i} $ quasi-normed函数空间的i} $ e $ E $ e $ e $ e $ e $ e $ e $ e $ e $ e quasi-norm-norm-norm-norm-norm-norm sequence sequence sequence sequence sequence semence sequence semence sequence sequence semence semence sequence。我们从其组件中$ e(\ Mathcal {x})$继承的各种几何和拓扑属性,例如在抽象设置中其完整性,二元性,二元性,订单连续性,理想和FATOU属性。此外,我们为$ e(\ Mathcal {x})$提供Banach功能空间表征,它使我们能够更深入地了解其结构和行为。此外,通过将Lorentz空间(Orlicz空间)和Lebesgue序列空间的适当合并,我们将Lorentz-Herz空间(Orlicz-Herz空间)定义为$ E(\ Mathcal {X})$的特定情况,这些情况仍然是经典赫尔兹空间的概括。在这种情况下(尤其是Lorentz-Herz空间),我们建立了先前研究的属性,证明了插值结果,并证明了重要的sublinear积分算子与满足大小条件的内核的界限。

In this paper, we introduce a class of function spaces called Köthe-Herz spaces $E(\mathcal{X})$. These spaces are similar to amalgam spaces and are characterized by a local component given by a countable family $\mathcal{X}=\left( X_{α}\right) _{α\in I}$ of quasi-normed function spaces, and a global component $E$, which is a quasi-normed sequence space. We investigate various geometric and topological properties inherited by $E(\mathcal{X})$ from its components, such as their completeness, duality, order continuity, ideal and Fatou properties, in an abstract setting. In addition, we provide a Banach function space characterization for $E(\mathcal{X})$, which allows us to understand its structure and behavior more deeply. Furthermore, by appropriate amalgamation of Lorentz spaces (Orlicz spaces) and Lebesgue sequence spaces, we define Lorentz-Herz spaces (Orlicz-Herz spaces) as a particular case of $E(\mathcal{X})$, which are still generalizations of the classical Herz spaces. In this context (especially Lorentz-Herz spaces), we establish previously studied properties, demonstrate interpolation results, and prove the boundedness of important sublinear integral operators with kernels that satisfy a size condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源