论文标题

vec2face-v2:通过基于注意力的网络在面部识别中揭示人的面孔从黑盒中揭示黑框功能

Vec2Face-v2: Unveil Human Faces from their Blackbox Features via Attention-based Network in Face Recognition

论文作者

Truong, Thanh-Dat, Duong, Chi Nhan, Le, Ngan, Savvides, Marios, Luu, Khoa

论文摘要

在这项工作中,我们研究了面部重建的问题,鉴于从黑框面部识别引擎中提取的面部特征表示。确实,由于引擎中抽象信息的局限性在实践中是一个非常具有挑战性的问题。因此,我们在蒸馏框架(dab-gan)中引入了一种名为基于注意力的生成对抗网络的新方法,以合成受试者的面部,鉴于其提取的面部识别特征。鉴于主题的任何不受约束的面部特征,Dab-Gan可以在高清上重建其面部图像。 DAB-GAN方法包括一种新型的基于注意力的生成结构,采用新定义的两种定义的bi原始指标学习方法。该框架首先引入徒指标,以便可以在图像域中直接在图像重建任务中直接采用距离测量和度量学习过程。来自Blackbox面部识别引擎的信息将使用全局蒸馏过程最佳利用。然后,提出了一个基于注意力的发电机,以使一个高度健壮的发电机可以通过ID保存综合逼真的面孔。我们已经评估了有关具有挑战性的面部识别数据库的方法,即Celeba,LF​​W,CFP-FP,CP-LFW,AgedB,CA-LFW,并始终取得了最先进的结果。在图像现实主义和ID保存属性中也证明了Dab-Gan的进步。

In this work, we investigate the problem of face reconstruction given a facial feature representation extracted from a blackbox face recognition engine. Indeed, it is a very challenging problem in practice due to the limitations of abstracted information from the engine. We, therefore, introduce a new method named Attention-based Bijective Generative Adversarial Networks in a Distillation framework (DAB-GAN) to synthesize the faces of a subject given his/her extracted face recognition features. Given any unconstrained unseen facial features of a subject, the DAB-GAN can reconstruct his/her facial images in high definition. The DAB-GAN method includes a novel attention-based generative structure with the newly defined Bijective Metrics Learning approach. The framework starts by introducing a bijective metric so that the distance measurement and metric learning process can be directly adopted in the image domain for an image reconstruction task. The information from the blackbox face recognition engine will be optimally exploited using the global distillation process. Then an attention-based generator is presented for a highly robust generator to synthesize realistic faces with ID preservation. We have evaluated our method on the challenging face recognition databases, i.e., CelebA, LFW, CFP-FP, CP-LFW, AgeDB, CA-LFW, and consistently achieved state-of-the-art results. The advancement of DAB-GAN is also proven in both image realism and ID preservation properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源