论文标题

合并套件的补充

Complements of coalescing sets

论文作者

Butler, Steve, D'Avanzo, Elena, Heikkinen, Rachel, Jeffries, Joel, Kruczek, Alyssa, Niergarth, Harper

论文摘要

我们认为表格$ QD+a $的矩阵,其中$ d $是对角度矩阵,$ a $作为邻接矩阵,而$ q $是固定值。给定我们称之为融合的$(h,b)$的图形$ h $和$ h $和$ b \ subseteq v(g)$,我们得出了特征多项式的公式,其中root附加了同一rooted Graph $ g $的副本,将根连接到\ emph {everph {avery} vertertex of $ b $。此外,我们确定$(h_1,b_1)$和$(h_2,b_2)$是两个合并对的,对于任何可能的根graph $ g $,然后是$(h_1),v(h_1)\ setminus b_1)$和$(H_2,v(h_2),v(h_2)\ setminus b_2 $ yous at peccect as cosminus $ geccect as as as as cost $ geccect as as as as as as costral,$(h_1)\ setminus b_1)$(h_1)\ setminus b_1)是$ GEAR的。

We consider matrices of the form $qD+A$, with $D$ being the diagonal matrix of degrees, $A$ being the adjacency matrix, and $q$ a fixed value. Given a graph $H$ and $B\subseteq V(G)$, which we call a coalescent pair $(H,B)$, we derive a formula for the characteristic polynomial where a copy of same rooted graph $G$ is attached by the root to \emph{each} vertex of $B$. Moreover, we establish if $(H_1,B_1)$ and $(H_2,B_2)$ are two coalescent pairs which are cospectral for any possible rooted graph $G$, then $(H_1,V(H_1)\setminus B_1)$ and $(H_2,V(H_2)\setminus B_2)$ will also always be cospectral for any possible rooted graph $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源