论文标题

手指多模式特征融合和基于通道空间注意的识别

Finger Multimodal Feature Fusion and Recognition Based on Channel Spatial Attention

论文作者

Guo, Jian, Tu, Jiaxiang, Ren, Hengyi, Han, Chong, Sun, Lijuan

论文摘要

由于单峰生物识别系统的不稳定性和局限性,多模式系统吸引了研究人员的关注。但是,如何利用不同方式之间的独立和互补信息仍然是一个关键和具有挑战性的问题。在本文中,我们提出了一种基于指纹和手指静脉的多模式融合识别算法(指纹手指静脉 - 通道 - 通道空间注意融合模块,FPV-CSAFM)。具体而言,对于每对指纹和手指静脉图像,我们首先提出一个简单有效的卷积神经网络(CNN)来提取特征。然后,我们构建一个多模式特征融合模块(通道空间注意融合模块,CSAFM),以完全融合指纹和指纹之间的互补信息。与现有的融合策略不同,我们的融合方法可以根据渠道和空间维度不同方式的重要性动态调整融合权重,从而更好地将信息之间的信息更好地结合在一起,并提高整体识别性能。为了评估我们方法的性能,我们在多个公共数据集上进行了一系列实验。实验结果表明,所提出的FPV-CSAFM基于指纹和手指静脉在三个多模式数据集上实现了出色的识别性能。

Due to the instability and limitations of unimodal biometric systems, multimodal systems have attracted more and more attention from researchers. However, how to exploit the independent and complementary information between different modalities remains a key and challenging problem. In this paper, we propose a multimodal biometric fusion recognition algorithm based on fingerprints and finger veins (Fingerprint Finger Veins-Channel Spatial Attention Fusion Module, FPV-CSAFM). Specifically, for each pair of fingerprint and finger vein images, we first propose a simple and effective Convolutional Neural Network (CNN) to extract features. Then, we build a multimodal feature fusion module (Channel Spatial Attention Fusion Module, CSAFM) to fully fuse the complementary information between fingerprints and finger veins. Different from existing fusion strategies, our fusion method can dynamically adjust the fusion weights according to the importance of different modalities in channel and spatial dimensions, so as to better combine the information between different modalities and improve the overall recognition performance. To evaluate the performance of our method, we conduct a series of experiments on multiple public datasets. Experimental results show that the proposed FPV-CSAFM achieves excellent recognition performance on three multimodal datasets based on fingerprints and finger veins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源